Acetonitrile Ligand (acetonitrile + ligand)

Distribution by Scientific Domains


Selected Abstracts


Nitrate- and Nitrite-Assisted Conversion of an Acetonitrile Ligand Into an Amidato Bridge at an {Mo2(Cp)2(,-SMe)3} Core: Electrochemistry of the Amidato Complex [Mo2(Cp)2(,-SMe)3{,-,1,,1 -OC(Me)NH}]+

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 19 2005
Marc Le Hénanf
Abstract Treatment of [Mo2(Cp)2(,-SMe)3(MeCN)2]+ (1+) with NO3, or NO2, results in the conversion of one terminally bound acetonitrile ligand into an amidato bridge. The reaction produces [Mo2(Cp)2(,-SMe)3{,-,1,,1 -OC(Me)NH}]0/+ (20/+) and involves the formation of an intermediate, which was detected by cyclic voltammetry but which could not be isolated, and which likely arises from the substitution of the NOx anion for one MeCN ligand. The electrochemical behaviour of 2+ was studied by cyclic voltammetry in THF and MeCN. The reduction of 2+ in the presence of acid (HBF4/H2O or HBF4/Et2O) in these solvents leads to the release of the amidate bridge. Controlled-potential electrolysis of 2+ in MeCN in the presence of acid produces 1+ quantitatively; the charge consumed (>1 F,mol,1 of 1+) indicates that electrons are also used to reduce protons. This was confirmed by the formation of 2+ (in variable amounts depending on the conditions) on treating 2 with acid. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


catena -Poly[[bis(acetonitrile-,N)manganese(II)]-bis(,-trifluoromethanesulfonato-,2O:O,)]

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 1 2010
Martin Lutz
The title compound, [Mn(CF3SO3)2(CH3CN)2]n, has an MnII cation on an inversion centre in an octahedral environment. The trifluoromethanesulfonate anions act as bridging ligands and form a one-dimensional coordination polymer in the direction of the a axis. The F atoms of the trifluoromethanesulfonate anions form layers parallel to the ab plane, but despite short intermolecular distances, no stabilizing F...F interactions are detected. The Mn,N and C,C bonds of the acetonitrile ligand are analyzed according to the Hirshfeld rigid-bond test. Renninger effects in the reflection data are considered, explored and discussed. [source]


Cyclometalated 2-phenylpyridine complex [RuII(o -C6H4 -py)(MeCN)4]PF6 as a tunable catalyst for living radical polymerization

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 12 2008
F. Diaz Camacho
Abstract The cyclometalated complex [RuII(o -C6H4 -py)(MeCN)4]PF6 (1) with a ,-RuC bond and four substitutionally labile acetonitrile ligands mediates radical polymerization of different vinyl monomers, viz. n -butyl acrylate, methyl methacrylate, and styrene, initiated by three alkyl bromides: ethyl 2-bromoisobutyrate, methyl 2-bromopropionate, and 1-phenylethyl bromide. The polymerization requires the presence of Al(OiPr)3 and occurs uncontrollably as a conventional radical process. The variation of the molar ratio of the components of the reaction mixture, such as initiator, Al(OiPr)3 and catalyst, affected the polymerization rates and the molecular weights but did not improve the control. A certain level of control has been achieved by adding 0.5 eq of SnCl2 as a reducing agent. Tin(II) chloride decreased the rate of polymerization and simultaneously the molecular weights became conversion-dependent and the polydispersities were also narrowed. Remarkably, the level of control was radically improved in the presence of excess of the poorly soluble catalyst (1), when the added amount of (1) was not soluble any more, i.e., under heterogeneous conditions, the system became adjustable and the living polymerization of all three monomers was finally achieved. Possible mechanisms of the (1)-catalyzed polymerization are discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4193,4204, 2008 [source]