| |||
Accumulation Patterns (accumulation + pattern)
Selected AbstractsNorth-south Differentiation of the Hydrocarbon Accumulation Pattern of Carbonate Reservoirs in the Yingmaili Low Uplift, Tarim Basin, Northwest ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2008Lü Xiuxiang Abstract: By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock. [source] Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa),ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2006Martina G. Vijver Abstract Metal ions in excess of metabolic requirements are potentially toxic and must be removed from the vicinity of important biological molecules to protect organisms from adverse effects. Correspondingly, metals are sequestrated in various forms, defining the accumulation pattern and the magnitude of steady-state levels reached. To investigate the subcellular fractions over which Ca, Mg, Fe, Cu, Zn, Cd, Pb, Ni, and As are distributed, earthworms (Aporrectodea caliginosa) collected from the field were analyzed by isolating metal-rich granules and tissue fragments from intracellular microsomal and cytosolic fractions (i.e., heat-stable proteins and heat-denatured proteins). The fractions showed metal-specific binding capacity. Cadmium was mainly retrieved from the protein fractions. Copper was equally distributed over the protein fraction and the fraction comprising tissue fragments, cell membranes, and intact cells. Zinc, Ca, Mg, and As were mainly found in this fraction as well. Lead, Fe, and Ni were mainly isolated from the granular fraction. To study accumulation kinetics in the different fractions, three experiments were conducted in which earthworms were exposed to metal-spiked soil and a soil contaminated by anthropogenic inputs and, indigenous earthworms were exposed to field soils. Although kinetics showed variation, linear uptake and steady-state types of accumulation patterns could be understood according to subcellular compartmentalization. For risk assessment purposes, subcellular distribution of metals might allow for a more precise estimate of effects than total body burden. Identification of subcellular partitioning appears useful in determining the biological significance of steady-state levels reached in animals. [source] Conservation of arthropod midline netrin accumulation revealed with a cross-reactive antibody provides evidence for midline cell homologyEVOLUTION AND DEVELOPMENT, Issue 3 2009Wendy Simanton SUMMARY Although many similarities in arthropod CNS development exist, differences in axonogenesis and the formation of midline cells, which regulate axon growth, have been observed. For example, axon growth patterns in the ventral nerve cord of Artemia franciscana differ from that of Drosophila melanogaster. Despite such differences, conserved molecular marker expression at the midline of several arthropod species indicates that midline cells may be homologous in distantly related arthropods. However, data from additional species are needed to test this hypothesis. In this investigation, nerve cord formation and the putative homology of midline cells were examined in distantly related arthropods, including: long- and short-germ insects (D. melanogaster, Aedes aeygypti, and Tribolium castaneum), branchiopod crustaceans (A. franciscana and Triops longicauditus), and malacostracan crustaceans (Porcellio laevis and Parhyale hawaiensis). These comparative analyses were aided by a cross-reactive antibody generated against the Netrin (Net) protein, a midline cell marker and regulator of axonogenesis. The mechanism of nerve cord formation observed in Artemia is found in Triops, another branchiopod, but is not found in the other arthropods examined. Despite divergent mechanisms of midline cell formation and nerve cord development, Net accumulation is detected in a well-conserved subset of midline cells in branchiopod crustaceans, malacostracan crustaceans, and insects. Notably, the Net accumulation pattern is also conserved at the midline of the amphipod P. hawaiensis, which undergoes split germ-band development. Conserved Net accumulation patterns indicate that arthropod midline cells are homologous, and that Nets function to regulate commissure formation during CNS development of Tetraconata. [source] Thyroid hormone stimulates ,-glutamyl transpeptidase in the developing rat cerebra and in astroglial culturesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005Asmita Dasgupta Abstract Hypothyroidism in the developing rat brain is associated with enhanced oxidative stress, one of the earliest manifestations of which is a decline in the level of glutathione (GSH). To investigate the role of thyroid hormone (TH) on GSH homeostasis, the effect of TH on ,-glutamyl transpeptidase (,GT), the key enzyme involved in the catalysis of GSH, was studied. Hypothyroidism declined the specific activity of cerebral ,GT at all postnatal ages examined (postnatal day 1,20) with a maximum inhibition of 42% at postnatal day 10. Intraperitoneal injection of TH to 15-day-old rat pups increased the specific activity of ,GT by 25-30% within 4,6 hr. Treatment of primary cultures of astrocytes by TH also enhanced the specific activity of ,GT by 30,40% within 4,6 hr. The induction of ,GT by TH was blocked by actinomycin D or cycloheximide. ,GT is an ectoenzyme that is normally involved in the catabolism of GSH released by astrocytes. In the presence of the ,GT-inhibitor, acivicin, GSH released in the culture medium of astrocytes increased linearly for at least 6 hr and TH had no effect on this accumulation pattern. In the absence of acivicin, GSH content of the medium from TH-treated cells was significantly lower than that of untreated controls due to activation of ,GT by TH and a faster processing of GSH. Because the products of ,GT reaction are putative precursors for neuronal GSH, the activation of ,GT by TH may be conducive to GSH synthesis in neurons and their protection from oxidative stress. © 2005 Wiley-Liss, Inc. [source] The effect of food rations on tissue-specific copper accumulation patterns of sublethal waterborne exposure in Cyprinus carpioENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2007Shodja Hashemi Abstract Common carp (Cyprinus carpio) were fed to two different food rations, 0.5% body weight (low ration [LR]) and 5% body weight (high ration [HR]), and were exposed to sublethal (1 ,M) copper levels for 28 d in softened Antwerp (Belgium) city tap water (Ca2+, 79.3 mg/L; Mg2+, 7.4 mg/L; Na+, 27.8 mg/L; pH 7.5,8.0). Copper accumulations in the liver, gills, kidney, anterior intestine, posterior intestine, and muscle were determined. Copper accumulation in the gills, liver, and kidney of LR fish was significantly higher than in HR fish. The only time copper uptake in HR fish was significantly higher than in LR fish was in the posterior intestine after two weeks of exposure. No difference was found between the two rations in the anterior intestine. Copper accumulation in the liver of both feeding treatments occurred in a time-dependent manner and did not reach steady state in any treatment. On the contrary, copper concentration in the gills reached a steady state for both HR and LR fish within the first week of exposure. No copper accumulation was found in muscle tissues of either treatment. Copper concentration dropped to control levels in all tissues, except liver tissue, two weeks after the exposure ended. Our studies indicated that copper uptake was influenced by the food ration in carp. The difference in copper accumulation probably is related to the amount of dietary NaCl and different rates of metallothionein synthesis. Low food availability provides less Na+ influx and leads to increased brachial uptake of Na+ and copper. In addition, it has been shown that starved animals show increased levels of metallothionein, possibly causing higher copper accumulation. [source] Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa),ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2006Martina G. Vijver Abstract Metal ions in excess of metabolic requirements are potentially toxic and must be removed from the vicinity of important biological molecules to protect organisms from adverse effects. Correspondingly, metals are sequestrated in various forms, defining the accumulation pattern and the magnitude of steady-state levels reached. To investigate the subcellular fractions over which Ca, Mg, Fe, Cu, Zn, Cd, Pb, Ni, and As are distributed, earthworms (Aporrectodea caliginosa) collected from the field were analyzed by isolating metal-rich granules and tissue fragments from intracellular microsomal and cytosolic fractions (i.e., heat-stable proteins and heat-denatured proteins). The fractions showed metal-specific binding capacity. Cadmium was mainly retrieved from the protein fractions. Copper was equally distributed over the protein fraction and the fraction comprising tissue fragments, cell membranes, and intact cells. Zinc, Ca, Mg, and As were mainly found in this fraction as well. Lead, Fe, and Ni were mainly isolated from the granular fraction. To study accumulation kinetics in the different fractions, three experiments were conducted in which earthworms were exposed to metal-spiked soil and a soil contaminated by anthropogenic inputs and, indigenous earthworms were exposed to field soils. Although kinetics showed variation, linear uptake and steady-state types of accumulation patterns could be understood according to subcellular compartmentalization. For risk assessment purposes, subcellular distribution of metals might allow for a more precise estimate of effects than total body burden. Identification of subcellular partitioning appears useful in determining the biological significance of steady-state levels reached in animals. [source] Conservation of arthropod midline netrin accumulation revealed with a cross-reactive antibody provides evidence for midline cell homologyEVOLUTION AND DEVELOPMENT, Issue 3 2009Wendy Simanton SUMMARY Although many similarities in arthropod CNS development exist, differences in axonogenesis and the formation of midline cells, which regulate axon growth, have been observed. For example, axon growth patterns in the ventral nerve cord of Artemia franciscana differ from that of Drosophila melanogaster. Despite such differences, conserved molecular marker expression at the midline of several arthropod species indicates that midline cells may be homologous in distantly related arthropods. However, data from additional species are needed to test this hypothesis. In this investigation, nerve cord formation and the putative homology of midline cells were examined in distantly related arthropods, including: long- and short-germ insects (D. melanogaster, Aedes aeygypti, and Tribolium castaneum), branchiopod crustaceans (A. franciscana and Triops longicauditus), and malacostracan crustaceans (Porcellio laevis and Parhyale hawaiensis). These comparative analyses were aided by a cross-reactive antibody generated against the Netrin (Net) protein, a midline cell marker and regulator of axonogenesis. The mechanism of nerve cord formation observed in Artemia is found in Triops, another branchiopod, but is not found in the other arthropods examined. Despite divergent mechanisms of midline cell formation and nerve cord development, Net accumulation is detected in a well-conserved subset of midline cells in branchiopod crustaceans, malacostracan crustaceans, and insects. Notably, the Net accumulation pattern is also conserved at the midline of the amphipod P. hawaiensis, which undergoes split germ-band development. Conserved Net accumulation patterns indicate that arthropod midline cells are homologous, and that Nets function to regulate commissure formation during CNS development of Tetraconata. [source] Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forestFUNCTIONAL ECOLOGY, Issue 2 2007J. SARDANS Summary 1Climate models predict more extreme weather in Mediterranean ecosystems, with more frequent drought periods and torrential rainfall. These expected changes may affect major process in ecosystems such as mineral cycling. However, there is a lack of experimental data regarding the effects of prolonged drought on nutrient cycling and content in Mediterranean ecosystems. 2A 6-year drought manipulation experiment was conducted in a Quercus ilex Mediterranean forest. The aim was to investigate the effects of drought conditions expected to occur over the coming decades, on the contents and concentrations of phosphorus (P) and potassium (K) in stand biomass, and P and K content and availability in soils. 3Drought (an average reduction of 15% in soil moisture) increased P leaf concentration by 18·2% and reduced P wood and root concentrations (30·9% and 39·8%, respectively) in the dominant tree species Quercus ilex, suggesting a process of mobilization of P from wood towards leaves. The decrease in P wood concentrations in Quercus ilex, together with a decrease in forest biomass growth, led to an overall decrease (by approximately one-third) of the total P content in above-ground biomass. In control plots, the total P content in the above-ground biomass increased 54 kg ha,1 from 1999 to 2005, whereas in drought plots there was no increase in P levels in above-ground biomass. Drought had no effects on either K above-ground contents or concentrations. 4Drought increased total soil soluble P by increasing soil soluble organic P, which is the soil soluble P not directly available to plant capture. Drought reduced the ratio of soil soluble inorganic P : soil soluble organic P by 50% showing a decrease of inorganic P release from P bound to organic matter. Drought increased by 10% the total K content in the soil, but reduced the soil soluble K by 20·4%. 5Drought led to diminished plant uptake of mineral nutrients and to greater recalcitrance of minerals in soil. This will lead to a reduction in P and K in the ecosystem, due to losses in P and K through leaching and erosion, if the heavy rainfalls predicted by IPCC (Intergovernmental Panel on Climate Change) models occur. As P is currently a limiting factor in many Mediterranean terrestrial ecosystems, and given that P and K are necessary for high water-use efficiency and stomata control, the negative effects of drought on P and K content in the ecosystem may well have additional indirect negative effects on plant fitness. [source] Mechanical deformation model of the western United States instantaneous strain-rate fieldGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2006Fred F. Pollitz SUMMARY We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M, 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific,North America plate boundary along ,1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. [source] Usefulness of single photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancerINTERNATIONAL JOURNAL OF UROLOGY, Issue 6 2008Tetsuo Nozaki Objective: To determine whether single photon emission computed tomography (SPECT) is useful in the detection of prostate cancer bone metastases in the lumbar vertebrae. Methods: Thirty-nine patients (12 with benign prostatic hyperplasia, 27 with prostate cancer) were considered and submitted to bone SPECT. All of them had increased uptake in lumbar vertebrae on bone scintigraphy. In those with prostate cancer, definitive diagnosis of bone metastases was established by magnetic resonance imaging (MRI). SPECT axial images were classified into five accumulation patterns: mosaic, large hot, diffuse, peripheral, and articular (or pediculate). Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of bone SPECT were calculated. Results: Overall, 116 vertebral lesions (49 metastatic, 67 degenerative) were studied. Mosaic, large hot and diffuse patterns were more frequently associated with metastatic lesions (84.2%, 70.3%, and 63.1% of the cases, respectively). On the other hand, peripheral and articular (or pediculate) patterns were mostly ascribed to degenerative lesions (100% and 87.5% of the cases, respectively). Sensitivity, specificity, PPV and NPV of bone SPECT were 95.9% (47/49), 73.1% (49/67), 72.3% (47/65), and 96.1% (49/51), respectively. Conclusions: Bone SPECT provides better accuracy than bone scintigraphy in differential diagnosis of lumbar vertebral lesions from prostate cancer. [source] Effects of salinity and ultraviolet radiation on the concentration of mycosporine-like amino acids in various isolates of the benthic cyanobacterium Microcoleus chthonoplastesPHYCOLOGICAL RESEARCH, Issue 2 2002Ulf Karsten SUMMARY The effects of salinity and ultraviolet B (UV-B) treatment on the intracellular mycosporine-like amino acid (MAA) concentration in three isolates of the benthic cyanobacterium Microcoleus chthonoplastes from the Baltic Sea (WIS), Spain (EBD) and Australia (TOW) were compared. All strains contained shinorine and, in addition, both EBD and TOW exhibited the unknown MAA-332, and WIS exhibited the unknown MAA-346. Salinity treatment led to MAA accumulation in TOW and WIS, but not in EBD. Whereas UV-B exposure was accompanied by a strong increase in MAA in EBD and TOW, WIS did not survive the treatment. All data indicate isolate-specific MAA accumulation patterns under different environmental conditions and can be explained by ecotypic differentiation. A double function of MAAs as organic osmolytes and photoprotect-ants seems possible. [source] Root structure and cellular chloride, sodium and potassium distribution in salinized grapevinesPLANT CELL & ENVIRONMENT, Issue 6 2003R. STOREY ABSTRACT X-ray microanalysis was used to study the patterns of K+, Na+ and Cl, accumulation in salinized (25 mm NaCl) and non-salinized grapevine (Vitis) roots. The aim was to determine whether NaCl affects patterns of Cl, accumulation differentially in the roots of a Cl, -excluding genotype and a non-excluding genotype. Two regions of fibrous roots were analysed: (1) a region 2,3 mm basipetal to the root tip; and (2) a region of the root 10,12 mm basipetal to the root tip where the outermost layer is the hypodermis. The ion contents of the hypodermis, cortex, endodermis and pericycle vacuoles were analysed. Data were also collected from the cytoplasm of the endodermal and pericycle cells. The analyses showed that the ion profiles of the hypodermis and the endodermis were significantly different from those of the cortex and pericycle. The hypodermis and endodermis had higher K+ and lower Na+ and Cl, than surrounding cells. Some changes due to salinity such as increased K+ concentrations in the hypodermis were also noted. Chloride concentrations did not differ between the genotypes in the hypodermis, across the cortex or in the endodermis, but were higher in the pericycle of the excluder in comparison with the non-excluding genotype. However, K+/Na+ ratios of the cortex and endodermis were higher in the excluder. The pericycle cells exhibited the greatest ability to sequester Na+ and Cl, in vacuoles. Overall the data show cell-type-specific ion accumulation patterns and small but significant differences were found between genotypes. The possibility that these accumulation patterns arise from differences in uptake properties of cell types and/or result from the spatial distribution of the cell types along the competing symplastic and apoplastic ion transport pathways across the root is discussed. [source] Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditionsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 9 2009Jérôme Grimplet Abstract In order to investigate the unique contribution of individual wine grape (Vitis vinifera) berry tissues and water-deficit to wine quality traits, a survey of tissue-specific differences in protein and selected metabolites was conducted using pericarp (skin and pulp) and seeds of berries from vines grown under well-watered and water-deficit stress conditions. Of 1047 proteins surveyed from pericarp by 2-D PAGE, 90 identified proteins showed differential expression between the skin and pulp. Of 695 proteins surveyed from seed tissue, 163 were identified and revealed that the seed and pericarp proteomes were nearly completely distinct from one another. Water-deficit stress altered the abundance of approximately 7% of pericarp proteins, but had little effect on seed protein expression. Comparison of protein and available mRNA expression patterns showed that 32% pericarp and 69% seed proteins exhibited similar quantitative expression patterns indicating that protein accumulation patterns are strongly influenced by post-transcriptional processes. About half of the 32 metabolites surveyed showed tissue-specific differences in abundance with water-deficit stress affecting the accumulation of seven of these compounds. These results provide novel insights into the likely tissue-specific origins and the influence of water-deficit stress on the accumulation of key flavor and aroma compounds in wine. [source] Characteristics of Oil Sources from the Chepaizi Swell, Junggar Basin, ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010LIU Luofu Abstract: So far there has been no common opinion on oil source of the Chepaizi swell in the Junggar Basin. Therefore, it is difficult to determine the pathway system and trend of hydrocarbon migration, and this resulted in difficulties in study of oil-gas accumulation patterns. In this paper, study of nitrogen compounds distribution in oils from Chepaizi was carried out in order to classify source rocks of oils stored in different reservoirs in the study area. Then, migration characteristics of oils from the same source were investigated by using nitrogen compounds parameters. The results of nitrogen compounds in a group of oil/oil sand samples from the same source indicate that the oils trapped in the Chepaizi swell experienced an obvious vertical migration. With increasing migration distance, amounts and indices of carbazoles have a regular changing pattern (in a fine linear relationship). By using nitrogen compounds techniques, the analyzed oil/oil sand samples of Chepaizi can be classified into two groups. One is the samples stored in reservoir beds of the Cretaceous and Tertiary, and these oils came from mainly Jurassic source rock with a small amount of Cretaceous rock; the other is those stored in the Jurassic, Permian and Carboniferous beds, and they originated from the Permian source. In addition, a sample of oil from an upper Jurassic reservoir (Well Ka 6), which was generated from Jurassic coal source rock, has a totally different nitrogen compound distribution from those of the above-mentioned two groups of samples, which were generated from mudstone sources. Because of influence from fractionation of oil migration, amounts and ratios of nitrogen compounds with different structures and polarities change regularly with increasing migrating distance, and as a result the samples with the same source follow a good linear relationship in content and ratio, while the oil samples of different sources have obviously different nitrogen compound distribution owing to different organic matter types of their source rocks. These conclusions of oil source study are identical with those obtained by other geochemical bio-markers. Therefore, nitrogen compounds are of great significance in oil type classification and oil/source correlation. [source] |