Chronic Nicotine Treatment (chronic + nicotine_treatment)

Distribution by Scientific Domains


Selected Abstracts


Chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat ventral tegmental area

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2002
Andrea Sbarbati
Abstract Region-specific decreases of neurofilament proteins (NF) were described in the ventral tegmental area (VTA) of rats treated chronically with morphine, cocaine or alcohol. In a previous study, we demonstrated that NF levels were also changed in the VTA after chronic treatment with nicotine. The aim of this study was to clarify the submicroscopic basis of decreased immunoreactivity for NF-68, NF-160 and NF-200, as determined by using NR4, BF10 and RT97 antibodies, respectively. Microdensitometric analysis of brain sections showed that immunoreactivity for all NF was reduced in the VTA of animals exposed chronically to nicotine (0.4 mg/kg per day, 6 days of treatment), when compared to rats exposed to saline. Reduction in immunoreactivity was significant for NF-68 (P < 0.05), NF-160 (P < 0.01) and NF-200 (P < 0.05), showing a relative reduction of 34%, 42% and 38%, respectively, when compared to saline-treated rats. No difference was observed for any of the NF under study when immunoreactivity measurements in the substantia nigra were compared. Ultrastructural analysis was applied to evaluate changes in NF-68, NF-160 and NF-200 immunoreactivity in regions of the VTA that contain dopaminergic neurons following chronic nicotine treatment. At the electron microscopic level, no degenerative changes were found in neurons or glial cells of the VTA. With ultrastructural immunohistochemistry, evaluation of the homogeneity parameter of NF distribution showed a loss of homogeneity for NF-68 linked to the nicotine treatment. In areas in which NF organization appeared well preserved, analysis of the numerical density of NF revealed no significant difference for NF-68 (897/µm2 vs. 990/µm2), NF-160 (970/µm2 vs. 820/µm2) and NF-200 (1107/µm2 vs. 905/µm2) in nicotine-treated rats when compared to saline-treated rats. These results confirm that nicotine shares the same properties with cocaine and morphine in reducing NF in the VTA, a key brain structure of the rewards system, and that chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat VTA. [source]


Nicotine reverses adult-onset hypothyroidism-induced impairment of learning and memory: Behavioral and electrophysiological studies

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2006
K.H. Alzoubi
Abstract Nicotine alleviates cognitive impairment associated with a variety of health conditions. We examined the effect of chronic nicotine treatment on adult-onset hypothyroidism-induced impairment of learning and memory in rats. Hypothyroidism was induced by surgical removal of thyroid glands (thyroidectomy). One month later, chronic nicotine treatment (1 mg/kg sc, twice/day) was instituted for 4,6 weeks. Test of hippocampus-dependent spatial learning and memory in the radial arm water maze showed that hypothyroidism impaired learning as well as short-term and long-term memory retention. Chronic nicotine treatment reversed the hypothyroidism-induced learning and memory impairment. In normal rats, chronic nicotine treatment had no effect on learning and memory. Extracellular recordings from the CA1 region of anesthetized hypothyroid rats showed severe reduction of both early-phase and late-phase long-term potentiation (LTP) magnitude, which was reversed in nicotine-treated hypothyroid rats. These results show that chronic nicotine treatment prevents hypothyroidism-induced impairment of spatial cognition and LTP. © 2006 Wiley-Liss, Inc. [source]


Chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat ventral tegmental area

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2002
Andrea Sbarbati
Abstract Region-specific decreases of neurofilament proteins (NF) were described in the ventral tegmental area (VTA) of rats treated chronically with morphine, cocaine or alcohol. In a previous study, we demonstrated that NF levels were also changed in the VTA after chronic treatment with nicotine. The aim of this study was to clarify the submicroscopic basis of decreased immunoreactivity for NF-68, NF-160 and NF-200, as determined by using NR4, BF10 and RT97 antibodies, respectively. Microdensitometric analysis of brain sections showed that immunoreactivity for all NF was reduced in the VTA of animals exposed chronically to nicotine (0.4 mg/kg per day, 6 days of treatment), when compared to rats exposed to saline. Reduction in immunoreactivity was significant for NF-68 (P < 0.05), NF-160 (P < 0.01) and NF-200 (P < 0.05), showing a relative reduction of 34%, 42% and 38%, respectively, when compared to saline-treated rats. No difference was observed for any of the NF under study when immunoreactivity measurements in the substantia nigra were compared. Ultrastructural analysis was applied to evaluate changes in NF-68, NF-160 and NF-200 immunoreactivity in regions of the VTA that contain dopaminergic neurons following chronic nicotine treatment. At the electron microscopic level, no degenerative changes were found in neurons or glial cells of the VTA. With ultrastructural immunohistochemistry, evaluation of the homogeneity parameter of NF distribution showed a loss of homogeneity for NF-68 linked to the nicotine treatment. In areas in which NF organization appeared well preserved, analysis of the numerical density of NF revealed no significant difference for NF-68 (897/µm2 vs. 990/µm2), NF-160 (970/µm2 vs. 820/µm2) and NF-200 (1107/µm2 vs. 905/µm2) in nicotine-treated rats when compared to saline-treated rats. These results confirm that nicotine shares the same properties with cocaine and morphine in reducing NF in the VTA, a key brain structure of the rewards system, and that chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat VTA. [source]


Strain- and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment

GENES, BRAIN AND BEHAVIOR, Issue 1 2008
J. Wang
A pathway-focused complementary DNA microarray and gene ontology analysis were used to investigate gene expression profiles in the amygdala, hippocampus, nucleus accumbens, prefrontal cortex (PFC) and ventral tegmental area of C3H/HeJ and C57BL/6J mice receiving nicotine in drinking water (100 ,g/ml in 2% saccharin for 2 weeks). A balanced experimental design and rigorous statistical analysis have led to the identification of 3.5,22.1% and 4.1,14.3% of the 638 sequence-verified genes as significantly modulated in the aforementioned brain regions of the C3H/HeJ and C57BL/6J strains, respectively. Comparisons of differential expression among brain tissues showed that only a small number of genes were altered in multiple brain regions, suggesting presence of a brain region-specific transcriptional response to nicotine. Subsequent principal component analysis and Expression Analysis Systematic Explorer analysis showed significant enrichment of biological processes both in C3H/HeJ and C57BL/6J mice, i.e. cell cycle/proliferation, organogenesis and transmission of nerve impulse. Finally, we verified the observed changes in expression using real-time reverse transcriptase polymerase chain reaction for six representative genes in the PFC region, providing an independent replication of our microarray results. Together, this report represents the first comprehensive gene expression profiling investigation of the changes caused by nicotine in brain tissues of the two mouse strains known to exhibit differential behavioral and physiological responses to nicotine. [source]


NMDA-mediated modulation of dopamine release is modified in rat prefrontal cortex and nucleus accumbens after chronic nicotine treatment

JOURNAL OF NEUROCHEMISTRY, Issue 2 2009
Massimo Grilli
Abstract In this study, we investigate the effects of chronic administration of (,)nicotine on the function of the NMDA-mediated modulation of [3H]dopamine (DA) release in rat prefrontal cortex (PFC) and nucleus accumbens (NAc). In the PFC synaptosomes NMDA in a concentration-dependent manner evoked [3H]DA release in rats chronically treated with vehicle (14 days) with an EC50 of 13.1 ± 2.0 ,M. The NMDA-evoked overflow of the [3H]DA in PFC nerve endings of rats treated with (,)nicotine was significantly lower (,43%) than in vehicle treated rats. The EC50 was 9.0 ± 1.4 ,M. Exposure of NAc synaptosomes of rats treated with vehicle to NMDA produced an increase in [3H]DA overflow with an EC50 of 14.5 ± 5.5 ,M. This effect was significantly enhanced in chronically treated animals. The EC50 was 10.5 ± 0.5 ,M. The K+ -evoked release of [3H]DA was not modified by the (,)nicotine administration. Both the changes of the NMDA-evoked [3H]DA overflow in the NAc and PFC disappeared after 14 days withdrawal. The results show that chronic (,)nicotine differentially affects the NMDA-mediated [3H]DA release in the PFC and NAc of the rat. [source]


Nicotine reverses adult-onset hypothyroidism-induced impairment of learning and memory: Behavioral and electrophysiological studies

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2006
K.H. Alzoubi
Abstract Nicotine alleviates cognitive impairment associated with a variety of health conditions. We examined the effect of chronic nicotine treatment on adult-onset hypothyroidism-induced impairment of learning and memory in rats. Hypothyroidism was induced by surgical removal of thyroid glands (thyroidectomy). One month later, chronic nicotine treatment (1 mg/kg sc, twice/day) was instituted for 4,6 weeks. Test of hippocampus-dependent spatial learning and memory in the radial arm water maze showed that hypothyroidism impaired learning as well as short-term and long-term memory retention. Chronic nicotine treatment reversed the hypothyroidism-induced learning and memory impairment. In normal rats, chronic nicotine treatment had no effect on learning and memory. Extracellular recordings from the CA1 region of anesthetized hypothyroid rats showed severe reduction of both early-phase and late-phase long-term potentiation (LTP) magnitude, which was reversed in nicotine-treated hypothyroid rats. These results show that chronic nicotine treatment prevents hypothyroidism-induced impairment of spatial cognition and LTP. © 2006 Wiley-Liss, Inc. [source]