| |||
Chronic Immune Activation (chronic + immune_activation)
Selected AbstractsTiming and tuning of CD27,CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathologyIMMUNOLOGICAL REVIEWS, Issue 1 2009Martijn A. Nolte Summary:, After binding its natural ligand cluster of differentiation 70 (CD70), CD27, a tumor necrosis factor receptor (TNFR)-associated factor-binding member of the TNFR family, regulates cellular activity in subsets of T, B, and natural killer cells as well as hematopoietic progenitor cells. In normal immune responses, CD27 signaling appears to be limited predominantly by the restricted expression of CD70, which is only transiently expressed by cells of the immune system upon activation. Studies performed in CD27-deficient and CD70-transgenic mice have defined a non-redundant role of this receptor,ligand pair in shaping adaptive T-cell responses. Moreover, adjuvant properties of CD70 have been exploited for the design of anti-cancer vaccines. However, continuous CD27,CD70 interactions may cause immune dysregulation and immunopathology in conditions of chronic immune activation such as during persistent virus infection and autoimmune disease. We conclude that optimal tuning of CD27,CD70 interaction is crucial for the regulation of the cellular immune response. We provide a detailed comparison of costimulation through CD27 with its closely related family members 4-1BB (CD137), CD30, herpes virus entry mediator, OX40 (CD134), and glucocorticoid-induced TNFR family-related gene, and we argue that these receptors do not have a unique function per se but that rather the timing, context, and intensity of these costimulatory signals determine the functional consequence of their activity. [source] Partial restoration of T-cell function in aged mice by in vitro blockade of the PD-1/,PD-L1 pathwayAGING CELL, Issue 5 2010Celine S. Lages Summary Programmed cell death-1 (PD-1) is a newly characterized negative regulator of immune responses. The interaction of PD-1 with its ligands (PD-L1 and PD-L2) inhibits T-cell proliferation and cytokine production in young mice. Increased PD-1 expression has been described during chronic infections, inducing chronic activation of the immune system to control it. As aging is associated with chronic immune activation, PD-1 may contribute to age-associated T-cell dysfunction. Our data showed the following results in aged mice: (i) the number of PD-1-expressing T cells and the level of expression of PD-Ls was increased on dendritic cell subsets and T cells; (ii) PD-1+ T cells were exhausted effector memory T cells, as shown by their lower level of CD127, CD25 and CD28, as well as their limited proliferative and cytokine-producing capacity; (iii) the expression of PD-1 was up-regulated after T-cell receptor-mediated activation of CD8+ T cells, but not of CD4+ T cells; (iv) blockade of the PD-1/PD-L1 pathway moderately improved the cytokine production of T cells from old mice but did not restore their proliferation; and (v) blockade of the PD-1/PD-L1 pathway did not restore function of PD-1+ T cells; its effect appeared to be exclusively mediated by increased functionality of the PD-1, T cells. Our data thus suggest that blockade of the PD-1/PD-L1 is not likely to be efficient at restoring exhausted T-cell responses in aged hosts, although improving the responses of PD-1, T cells may prove to be a helpful strategy in enhancing primary responses. [source] Novel role of TGF-, in differential astrocyte-TIMP-1 regulation: Implications for HIV-1-dementia and neuroinflammationJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2006Alok Dhar Abstract Astrocyte production of tissue inhibitor of metalloproteinase (TIMP)-1 is important in central nervous system (CNS) homeostasis and inflammatory diseases such as HIV-1-associated dementia (HAD). TIMPs and matrix metalloproteinases (MMPs) regulate the remodeling of the extracellular matrix. An imbalance between TIMPs and MMPs is associated with many pathologic conditions. Our recently published studies uniquely demonstrate that HAD patients have reduced levels of TIMP-1 in the brain. Astrocyte-TIMP-1 expression is differentially regulated in acute and chronic inflammatory conditions. In this and the adjoining report (Gardner et al., 2006), we investigate the mechanisms that may be involved in differential TIMP-1 regulation. One mechanism for TIMP-1 downregulation is the production of anti-inflammatory molecules, which can activate signaling pathways during chronic inflammation. We investigated the contribution of transforming growth factor (TGF)-signaling in astrocyte-MMP/TIMP-1-astrocyte regulation. TGF-,1 and ,2 levels were upregulated in HAD brain tissues. Co-stimulation of astrocytes with IL-1, and TGF-, mimicked the TIMP-1 downregulation observed with IL-1, chronic activation. Measurement of astrocyte-MMP protein levels showed that TGF-, combined with IL-1, increased MMP-2 and decreased proMMP-1 expression compared to IL-1, alone. We propose that one of the mechanisms involved in TIMP-1 downregulation may be through TGF-signaling in chronic immune activation. These studies show a novel extracellular regulatory loop in astrocyte-TIMP-1 regulation. © 2006 Wiley-Liss, Inc. [source] Immune activation and inflammation in HIV-1 infection: causes and consequences,THE JOURNAL OF PATHOLOGY, Issue 2 2008V Appay Abstract Thorough research on HIV is progressively enabling us to understand the intricate mechanisms that link HIV-1 infection to the onset of immunodeficiency. The infection and depletion of CD4+ T cells represent the most fundamental events in HIV-1 infection. However, in recent years, the role played by chronic immune activation and inflammation in HIV pathogenesis has become increasingly apparent: quite paradoxically, immune activation levels are directly associated with HIV-1 disease progression. In addition, HIV-1-infected patients present intriguing similarities with individuals of old age: their immune systems are characterized by a loss of regenerative capacity and an accumulation of ageing T cells. In this review, we discuss the potential reasons for the establishment of sustained immune activation and inflammation from the early stages of HIV-1 infection, as well as the long-term consequences of this process on the host immune system and health. A simplified model of HIV pathogenesis is proposed, which links together the three major facets of HIV-1 infection: the massive depletion of CD4+ T cells, the paradoxical immune activation and the exhaustion of regenerative capacity. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] |