| |||
Chronic Ethanol Consumption (chronic + ethanol_consumption)
Selected AbstractsChronic Ethanol Consumption Results in Atypical Liver Injury in Copper/Zinc Superoxide Dismutase Deficient MiceALCOHOLISM, Issue 2 2010Tiana V. Curry-McCoy Background:, Ethanol metabolism increases production of reactive oxygen species, including superoxide () in the liver, resulting in significant oxidative stress, which causes cellular damage. Superoxide dismutase (SOD) is an antioxidant enzyme that converts superoxide to less toxic intermediates, preventing accumulation. Because the absence of SOD would confer less resistance to oxidative stress, we determined whether damage to hepatic proteolytic systems was greater in SOD,/, than in SOD+/+ mice after chronic ethanol feeding. Methods:, Female wild-type (SOD+/+) and Cu/Zn-SOD knockout (SOD,/,) mice were pair-fed ethanol and control liquid diets for 24 days, after which liver injury was assessed. Results:, Ethanol-fed SOD,/, mice had 4-fold higher blood ethanol, 2.8-fold higher alanine aminotransferase levels, 20% higher liver weight, a 1.4-fold rise in hepatic protein levels, and 35 to 70% higher levels of lipid peroxides than corresponding wild-type mice. While wild-type mice exhibited fatty liver after ethanol administration, SOD,/, mice showed no evidence of ethanol-induced steatosis, although triglyceride levels were elevated in both groups of knockout mice. Ethanol administration caused no significant change in proteasome activity, but caused lysosomal leakage in livers of SOD,/, mice but not in wild-type mice. Alcohol dehydrogenase activity was reduced by 50 to 60% in ethanol-fed SOD,/, mice compared with all other groups. Additionally, while ethanol administration induced cytochrome P450 2E1 (CYP2E1) activity in wild-type mice, it caused no such induction in SOD,/, mice. Unexpectedly, ethanol feeding significantly elevated total and mitochondrial levels of glutathione in SOD knockout mice compared with wild-type mice. Conclusion:, Ethanol-fed SOD,/, mice exhibited lower alcohol dehydrogenase activity and lack of CYP2E1 inducibility, thereby causing decreased ethanol metabolism compared with wild-type mice. These and other atypical responses to ethanol, including the absence of ethanol-induced steatosis and enhanced glutathione levels, appear to be linked to enhanced oxidative stress due to lack of antioxidant enzyme capacity. [source] Chronic Ethanol Consumption Induces Global Hepatic Protein HyperacetylationALCOHOLISM, Issue 2 2010Blythe D. Shepard Background:, Although the clinical manifestations of alcoholic liver disease are well described, little is known about the molecular basis for liver injury. Recent studies have indicated that chronic alcohol consumption leads to the lysine-hyperacetylation of several hepatic proteins, and this list is growing quickly. Methods:, To identify other hyperacetylated proteins in ethanol-fed livers, we chose a proteomics approach. Cytosolic and membrane proteins (excluding nuclei) were separated on 2D gels, transferred to PVDF and immunoblotted with antibodies specific for acetylated lysine residues. Hyperacetylated proteins were selected for trypsin digestion and mass spectrometric analysis. Results:, In all, 40 proteins were identified, 11 of which are known acetylated proteins. Remarkably, the vast majority of hyperacetylated membrane proteins were mitochondrial residents. Hyperacetylated cytosolic proteins ranged in function from metabolism to cytoskeletal support. Notably, 3 key anti-oxidant proteins were identified whose activities are impaired in ethanol-treated cells. We confirmed that the anti-oxidant enzyme, glutathione peroxidase 1, actin and cortactin are hyperacetylated in ethanol-treated livers. Conclusions:, Alcohol-induced hyperacetylation of multiple proteins may contribute to the development of liver injury. The abundance of acetylated mitochondrial proteins further suggests that this modification is important in regulating liver metabolism and when perturbed, may contribute to the progression of a variety of metabolic diseases. [source] Differential Effects of Chronic Ethanol Consumption and Withdrawal on Homer/Glutamate Receptor Expression in Subregions of the Accumbens and Amygdala of P RatsALCOHOLISM, Issue 11 2009Ilona Obara Background:, Homer proteins are constituents of scaffolding complexes that regulate the trafficking and function of central Group1 metabotropic glutamate receptors (mGluRs) and N -methyl- d -aspartate (NMDA) receptors. Research supports the involvement of these proteins in ethanol-induced neuroplasticity in mouse. In this study, we examined the effects of short versus long-term withdrawal from chronic ethanol consumption on Homer and glutamate receptor protein expression within striatal and amygdala subregions of selectively bred, alcohol-preferring P rats. Methods:, For 6 months, male P rats had concurrent access to 15% and 30% ethanol solutions under intermittent (IA: 4 d/wk) or continuous (CA: 7 d/wk) access conditions in their home cage. Rats were killed 24 hours (short withdrawal: SW) or 4 weeks (long withdrawal: LW) after termination of ethanol access, subregions of interest were micropunched and tissue processed for detection of Group1 mGluRs, NR2 subunits of the NMDA receptor and Homer protein expression. Results:, Within the nucleus accumbens (NAC), limited changes in NR2a and NR2b expression were detected in the shell (NACsh), whereas substantial changes were observed for Homer2a/b, mGluRs as well as NR2a and NR2b subunits in the core (NACc). Within the amygdala, no changes were detected in the basolateral subregion, whereas substantial changes, many paralleling those observed in the NACc, were detected in the central nucleus (CeA) subregion. In addition, most of the changes observed in the CeA, but not NACc, were present in both SW and LW rats. Conclusions:, Overall, these subregion specific, ethanol-induced increases in mGluR/Homer2/NR2 expression within the NAC and amygdala suggest changes in glutamatergic plasticity had taken place. This may be a result of learning and subsequent memory formation of ethanol's rewarding effects in these brain structures, which may, in part, mediate the chronic relapsing nature of alcohol abuse. [source] Chronic Ethanol Consumption Decreases Murine Langerhans Cell Numbers and Delays Migration of Langerhans Cells as Well as Dermal Dendritic CellsALCOHOLISM, Issue 4 2008Kristin J. Ness Background:, Chronic alcoholics experience increased incidence and severity of infections, the mechanism of which is incompletely understood. Dendritic cells (DC) migrate from peripheral locations to lymph nodes (LN) to initiate adaptive immunity against infection. Little is known about how chronic alcohol exposure affects skin DC numbers or migration. Methods:, Mice received 20% EtOH in the drinking water for up to 35 weeks. Baseline Langerhans cell (LC) and dermal DC (dDC) numbers were enumerated by immunofluorescence (IF). LC repopulation after inflammation was determined following congenic bone marrow (BM) transplant and ultraviolet (UV) irradiation. Net LC loss from epidermis was determined by IF following TNF-, or CpG stimulation. LC and dDC migration into LN was assessed by flow cytometry following epicutaneous FITC administration. Results:, Chronic EtOH consumption caused a baseline reduction in LC but not dDC numbers. The deficit was not corrected following transplantation with non-EtOH-exposed BM and UV irradiation, supporting the hypothesis that the defect is intrinsic to the skin environment rather than LC precursors. Net loss of LC from epidermis following inflammation was greatly reduced in EtOH-fed mice versus controls. Ethanol consumption for at least 4 weeks led to delayed LC migration into LN, and consumption for at least 8 weeks led to delayed dDC migration into LN following epicutaneous FITC application. Conclusions:, Chronic EtOH consumption causes decreased density of epidermal LC, which likely results in decreased epidermal immunosurveillance. It also results in altered migratory responsiveness and delayed LC and dDC migration into LN, which likely delays activation of adaptive immunity. Decreased LC density at baseline appears to be the result of an alteration in the skin environment rather than an intrinsic LC defect. These findings provide novel mechanisms to at least partially explain why chronic alcoholics are more susceptible to infections, especially those following skin penetration. [source] Alcohol-Induced Neurodegeneration: When, Where and Why?ALCOHOLISM, Issue 2 2004Fulton T. Crews Abstract: This manuscript reviews the proceedings of a symposium organized by Drs. Antonio Noronha and Fulton Crews presented at the 2003 Research Society on Alcoholism meeting. The purpose of the symposium was to examine recent findings on when alcohol induced brain damage occurs, e.g., during intoxication and/or during alcohol withdrawal. Further studies investigate specific brain regions (where) and the mechanisms (why) of alcoholic neurodegeneration. The presentations were (1) Characterization of Synaptic Loss in Cerebella of Mature and Senescent Rats after Lengthy Chronic Ethanol Consumption, (2) Ethanol Withdrawal Both Causes Neurotoxicity and Inhibits Neuronal Recovery Processes in Rat Organotypic Hippocampal Cultures, (3) Binge Drinking-Induced Brain Damage: Genetic and Age Related Effects, (4) Binge Ethanol-Induced Brain Damage: Involvement of Edema, Arachidonic Acid and Tissue Necrosis Factor , (TNF,), and (5) Cyclic AMP Cascade, Stem Cells and Ethanol. Taken together these studies suggest that alcoholic neurodegeneration occurs through multiple mechanisms and in multiple brain regions both during intoxication and withdrawal. [source] Blood pressure and vascular reactivity to endothelin-1, phenylephrine, serotonin, KCl and acetylcholine following chronic alcohol consumption in vitroFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2001Tijen Utkan Ethanol has been reported to cause hypertension, the mechanism of which is unknown. Therefore, the effect of chronic ethanol consumption on vascular responsiveness and blood pressure was investigated. Systolic blood pressure was recorded weekly by tail-cuff method. Aortic rings from rats fed chow ad libitum or pair-fed liquid diets containing either ethanol (7.2% v/v) or isocaloric carbohydrate for 4 weeks were placed in organ chambers for isometric tension measurement. There was a mild but significant elevation of the systolic blood pressure in the alcohol-fed rats by week 1 compared to baseline measurements and this remained higher. No significant changes in reactivity of rat isolated aortas to phenylephrine, serotonin, endothelin-1 (ET-1) and KCl were seen in chronic ethanol consumption. In addition, the sensitivity (i.e. pD2) of alcohol-fed aortic rings to the vasoconstrictors was also unchanged compared to controls. Chronic ethanol consumption, however, increased relaxation to acetylcholine with increased pD2 values, but did not alter relaxation to sodium nitroprusside, a cyclic guanosine monophosphate (cGMP)-dependent direct smooth muscle dilator. The results indicate that chronic ethanol consumption significantly potentiates endothelium-dependent relaxations in aortic rings, probably through interference with the production and/or the release of nitric oxide (NO) or adaptive alterations in muscarinic receptors on the endothelial cells, and that increased vascular responsiveness to several vasoconstrictors is not a mechanism responsible for the blood pressure elevation in the chronic alcohol consumption in rats. [source] Quantitative Lipid Metabolomic Changes in Alcoholic Micropigs With Fatty Liver DiseaseALCOHOLISM, Issue 4 2009Angela M. Zivkovic Background:, Chronic ethanol consumption coupled with folate deficiency leads to rapid liver fat accumulation and progression to alcoholic steatohepatitis (ASH). However, the specific effects of alcohol on key liver lipid metabolic pathways involved in fat accumulation are unknown. It is unclear whether lipid synthesis, lipid export, or a combination of both is contributing to hepatic steatosis in ASH. Methods:, In this study we estimated the flux of fatty acids (FA) through the stearoyl-CoA desaturase (SCD), phosphatidylethanolamine- N -methyltransferase (PEMT), and FA elongation pathways in relation to liver triacylglycerol (TG) content in Yucatan micropigs fed a 40% ethanol folate-deficient diet with or without supplementation with S -adenosyl methionine (SAM) compared with controls. Flux through the SCD and PEMT pathways was used to assess the contribution of lipid synthesis and lipid export respectively on the accumulation of fat in the liver. Liver FA composition within TG, cholesterol ester (CE), phosphatidylethanolamine, and phosphatidylcholine classes was quantified by gas chromatography. Results:, Alcoholic pigs had increased liver TG content relative to controls, accompanied by increased flux through the SCD pathway as indicated by increases in the ratios of 16:1n7 to 16:0 and 18:1n9 to 18:0. Conversely, flux through the elongation and PEMT pathways was suppressed by alcohol, as indicated by multiple metabolite ratios. SAM supplementation attenuated the TG accumulation associated with alcohol. Conclusions:, These data provide an in vivo examination of liver lipid metabolic pathways confirming that both increased de novo lipogenesis (e.g., lipid synthesis) and altered phospholipid metabolism (e.g., lipid export) contribute to the excessive accumulation of lipids in liver affected by ASH. [source] Chronic Ethanol-Induced Insulin Resistance Is Associated With Macrophage Infiltration Into Adipose Tissue and Altered Expression of AdipocytokinesALCOHOLISM, Issue 9 2007Li Kang Background:, Chronic ethanol consumption disrupts glucose homeostasis and is associated with the development of insulin resistance. While adipose tissue and skeletal muscle are the two major organs utilizing glucose in response to insulin, the relative contribution of these two tissues to impaired glucose homeostasis during chronic ethanol feeding is not known. As other models of insulin resistance, such as obesity, are characterized by an infiltration of macrophages into adipose tissue, as well as changes in the expression of adipocytokines that play a central role in the regulation of insulin sensitivity, we hypothesized that chronic ethanol-induced insulin resistance would be associated with increased macrophage infiltration into adipose tissue and changes in the expression of adipocytokines by adipose tissue. Methods:, Male Wistar rats were fed a liquid diet containing ethanol as 36% of calories or pair-fed a control diet for 4 weeks. The effects of chronic ethanol feeding on insulin-stimulated glucose utilization were studied using the hyperinsulinemic-euglycemic clamp technique, coupled with the use of isotopic tracers. Further, macrophage infiltration into adipose tissue and expression of adipocytokines were also assessed after chronic ethanol feeding. Results:, Hyperinsulinemic-euglycemic clamp studies revealed that chronic ethanol feeding to rats decreased whole-body glucose utilization and decreased insulin-mediated suppression of hepatic glucose production. Chronic ethanol feeding decreased glucose uptake in epididymal, subcutaneous, and omental adipose tissue during the hyperinsulinemic-euglycemic clamp, but had no effect on glucose disposal in skeletal muscle. Chronic ethanol feeding increased the infiltration of macrophages into epididymal adipose tissue and changed the expression of mRNA for adipocytokines: expression of mRNA for monocyte chemoattractant protein 1, tumor necrosis factor ,, and interleukin-6 were increased, while expression of mRNA for retinol binding protein 4 and adiponectin were decreased in epididymal adipose tissue. Conclusions:, These data demonstrate that chronic ethanol feeding results in the development of insulin resistance, associated with impaired insulin-mediated suppression of hepatic glucose production and decreased insulin-stimulated glucose uptake into adipose tissue. Chronic ethanol-induced insulin resistance was associated with increased macrophage infiltration into adipose tissue, as well as changes in the expression of adipocytokines by adipose tissue. [source] Serum Free Sialic Acid as a Marker of Alcohol AbuseALCOHOLISM, Issue 6 2007Lech Chrostek Background: Previous studies have shown that serum total sialic acid (TSA) concentration significantly increases during alcohol abuse. Chronic ethanol consumption impairs glycosylation of many proteins. The increased desialylation rate of serum glycoproteins is one of the effects of alcohol abuse. The aim of this study was to investigate the diagnostic value of free sialic acid (FSA) as a marker of alcohol abuse. Methods: We determined serum FSA concentrations in the group of 156 alcoholic subjects and 35 healthy control subjects by means of a modification of the thiobarbituric acid method. The alcoholic group was divided into subgroups according to their history of abuse. Results: The FSA concentration was significantly higher in alcoholic subjects than in healthy controls. The subjects who consumed alcohol for longer than a week showed significantly higher FSA level than those who consumed alcohol for a shorter period. The serum FSA concentration was significantly higher in alcoholic subjects with elevated markers of liver dysfunction. The diagnostic accuracy of FSA was high, although it did not differ from TSA, and was limited by its low sensitivity. Conclusions: This study shows that FSA concentration in the sera of alcoholic subjects is increased. The low diagnostic sensitivity is accompanied by high specificity, however the accuracy is high and similar to the accuracy of TSA. Free sialic acid does not seem to be a better marker of alcohol abuse than TSA and current markers. [source] Chronic Ethanol-Induced Subtype- and Subregion-Specific Decrease in the mRNA Expression of Metabotropic Glutamate Receptors in Rat HippocampusALCOHOLISM, Issue 9 2004Agnes Simonyi Background: Chronic ethanol consumption is known to induce adaptive changes in the hippocampal glutamatergic transmission and alter NMDA receptor binding and subunit expression. Metabotropic glutamate (mGlu) receptors have been shown to function as modulators of neuronal excitability and can fine tune glutamatergic transmission. This study was aimed to determine whether chronic ethanol treatment could change the messenger RNA (mRNA) expression of mGlu receptors in the hippocampus. Methods: Male Sprague Dawley® rats were fed a Lieber-DeCarli liquid diet with 5% (w/v) ethanol or isocaloric amount of maltose for 2 months. Quantitative in situ hybridization was carried out using coronal brain sections through the hippocampus. Results: The results revealed decreases in mRNA expression of several mGlu receptors in different subregions of the hippocampus. In the dentate gyrus, mGlu3 and mGlu5 receptor mRNA levels were significantly lower in the ethanol-treated rats than in the control rats. In the CA3 region, the mRNA expression of mGlu1, mGlu5, and mGlu7 receptors showed substantial decreases after ethanol exposure. The mGlu7 receptor mRNA levels were also declined in the CA1 region and the polymorph layer of the dentate gyrus. No changes were found in mRNA expression of mGlu2, mGlu4, and mGlu8 receptors. Conclusions: Considering the involvement of hippocampal mGlu receptors in learning and memory processes as well as in neurotoxicity and seizure production, the reduced expression of these receptors might contribute to ethanol withdrawal-induced seizures and also may play a role in cognitive deficits and brain damage caused by long-term ethanol consumption. [source] Immunohistochemical Characterization of Hepatic Malondialdehyde and 4-Hydroxynonenal Modified Proteins During Early Stages of Ethanol-Induced Liver InjuryALCOHOLISM, Issue 6 2003Brante P. Sampey Background: Chronic ethanol consumption is associated with hepatic lipid peroxidation and the deposition or retention of aldehyde-adducted proteins postulated to be involved in alcohol-induced liver injury. The purpose of this study was to characterize hepatocellular formation of aldehyde-protein adducts during early stages of alcohol-induced liver injury. Methods: Female Sprague Dawley® rats were subjected to the intragastric administration of a low-carbohydrate/high-fat total enteral nutrition diet or a total enteral nutrition diet containing ethanol for a period of 36 days. Indexes of hepatic responses to ethanol were evaluated in terms of changes in plasma alanine aminotransferase activity, hepatic histopathologic analysis, and induction of cytochrome P-4502E1 (CYP2E1). Immunohistochemical methods were used to detect hepatic proteins modified with malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE) for subsequent quantitative image analysis. Results: After 36 days of treatment, rats receiving the alcohol-containing diet displayed hepatic histopathologies characterized by marked micro- and macrosteatosis associated with only minor inflammation and necrosis. Alcohol administration resulted in a 3-fold elevation of plasma alanine aminotransferase activity and 3-fold increases (p < 0.01) in hepatic CYP2E1 apoprotein and activity. Quantitative immunohistochemical analysis revealed significant (p < 0.01) 5-fold increases in MDA- and 4-HNE modified proteins in liver sections prepared from rats treated with alcohol. The MDA- or 4-HNE modified proteins were contained in hepatocytes displaying intact morphology and were colocalized primarily with microvesicular deposits of lipid. Aldehyde-modified proteins were not prevalent in parenchymal or nonparenchymal cells associated with foci of necrosis or inflammation. Conclusions: These results suggest that alcohol-induced lipid peroxidation is an early event during alcohol-mediated liver injury and may be a sensitizing event resulting in the production of bioactive aldehydes that have the potential to initiate or propagate ensuing proinflammatory or profibrogenic cellular events. [source] Blood pressure and vascular reactivity to endothelin-1, phenylephrine, serotonin, KCl and acetylcholine following chronic alcohol consumption in vitroFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2001Tijen Utkan Ethanol has been reported to cause hypertension, the mechanism of which is unknown. Therefore, the effect of chronic ethanol consumption on vascular responsiveness and blood pressure was investigated. Systolic blood pressure was recorded weekly by tail-cuff method. Aortic rings from rats fed chow ad libitum or pair-fed liquid diets containing either ethanol (7.2% v/v) or isocaloric carbohydrate for 4 weeks were placed in organ chambers for isometric tension measurement. There was a mild but significant elevation of the systolic blood pressure in the alcohol-fed rats by week 1 compared to baseline measurements and this remained higher. No significant changes in reactivity of rat isolated aortas to phenylephrine, serotonin, endothelin-1 (ET-1) and KCl were seen in chronic ethanol consumption. In addition, the sensitivity (i.e. pD2) of alcohol-fed aortic rings to the vasoconstrictors was also unchanged compared to controls. Chronic ethanol consumption, however, increased relaxation to acetylcholine with increased pD2 values, but did not alter relaxation to sodium nitroprusside, a cyclic guanosine monophosphate (cGMP)-dependent direct smooth muscle dilator. The results indicate that chronic ethanol consumption significantly potentiates endothelium-dependent relaxations in aortic rings, probably through interference with the production and/or the release of nitric oxide (NO) or adaptive alterations in muscarinic receptors on the endothelial cells, and that increased vascular responsiveness to several vasoconstrictors is not a mechanism responsible for the blood pressure elevation in the chronic alcohol consumption in rats. [source] Ethanol-induced alterations of the antioxidant defense system in rat kidneyJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2006Diana Dinu Abstract We report here the effects of chronic ethanol consumption on the antioxidant defense system in rat kidney. Thirty-two male Wistar rats were randomly divided in two identical groups and were treated as follows: control group (water for fluid) and the ethanol-fed group (2 g/kg body weight/24 h). The animals were sacrificed after 10 weeks, and respectively 30 weeks of ethanol consumption, and the renal tissue was isolated and analyzed. Results revealed that kidney alcohol dehydrogenase activities increased significantly after ethanol administration, but the electrophoretic pattern of alcohol dehydrogenase isoforms was unmodified. The SDS polyacrylamidegel electrophoretic study of kidney proteins has revealed the appearance of two new protein bands after long-term ethanol consumption. The kidney reduced glutathione/oxidized glutathione ratio decreased, indicating an oxidative stress response due to ethanol ingestion. The malondialdehyde contents and xanthine oxidase activities were unchanged. The antioxidant enzymatic defense system showed a different response during the two periods of ethanol administration. After 10 weeks, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase were activated, while superoxide dismutase, glutathione transferase, and ,-glutamyltranspeptidase levels were stationary. After 30 weeks, superoxide dismutase and glutathione peroxidase activities were unmodified, but catalase, glutathione transferase, ,-glutamyltranspeptidase, glutathione reductase, and glucose-6-phosphate dehydrogenase activities were significantly increased. Remarkable changes have been registered after 30 weeks of ethanol administration for glutathione reductase and glucose-6-phosphate dehydrogenase activities, including an increase by 106 and 216' of control values, respectively. These results showed specific changes in rat kidney antioxidant system and glutathione status as a consequence of long-term ethanol administration. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:386-395, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20101 [source] Oseltamivir Treatment Prevents the Increased Influenza Virus Disease Severity and Lethality Occurring in Chronic Ethanol Consuming MiceALCOHOLISM, Issue 8 2010Ryan A. Langlois Background:, Chronic consumption of ethanol (EtOH) is well recognized to lead to defective innate and adaptive immune responses and increase the severity of pulmonary infections. Our own studies have demonstrated that chronic EtOH consumption decreases CD8 T-cell immunity to influenza virus infections (IAV) leading to severe infections and mortality. Interestingly, antiviral treatment of IAVs has been shown to be compromised in mice and humans that are immuno-deficient. It is known that EtOH can alter the pharmacokinetics of antivirals. Therefore, the effectiveness of influenza antiviral therapy during chronic ethanol consumption remains in question. Methods:, BALB/c mice were placed on 18% (w/v) EtOH in their drinking water for 8 weeks. Chronic EtOH consuming and water controls were then treated with 10 mg/kg oseltamivir orally and infected intranasally with influenza virus 4 hours post-oseltamivir treatment. The mice were then treated with oseltamivir twice daily until day 7 postinfection. Influenza disease severity was measured by morbidity and mortality, pulmonary viral titers, and histology. Results:, Chronic EtOH consuming mice infected with IAV and treated with oseltamivir have decreased morbidity and mortality, pulmonary viral titers, and pulmonary pathology compared to untreated EtOH mice. Conclusions:, Despite the severe immune defect seen in chronic EtOH mice as well as the potential for EtOH to inhibit the conversion of oseltamivir into an active form, treatment with oseltamivir reduces viral shedding as well as disease severity. These data suggest that the combination of a limited adaptive immune response plus the anti-IAV drug oseltamivir is sufficient to curb high mortality and mediate resolution of IAVs in mice chronically consuming ethanol. [source] Chronic Ethanol Disrupts Circadian Photic Entrainment and Daily Locomotor Activity in the MouseALCOHOLISM, Issue 7 2010Allison J. Brager Background:, Chronic ethanol abuse is associated with disrupted circadian rhythms and sleep. Ethanol administration impairs circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on circadian timing. Here, we extend previous studies to explore the effects of chronic forced ethanol on photic phase-resetting, photic entrainment, and daily locomotor activity patterns in C57BL/6J mice. Methods:, First, microdialysis was used to characterize the circadian patterns of ethanol uptake in the suprachiasmatic (SCN) circadian clock and correlate this with systemic ethanol levels and episodic drinking of 10 or 15% ethanol. Second, the effects of chronic forced ethanol drinking and withdrawal on photic phase-delays of the circadian activity rhythm were assessed. Third, the effects of chronic ethanol drinking on entrainment to a weak photic zeitgeber (1 minute of 25 lux intensity light per day) were assessed. This method was used to minimize any masking actions of light that could mask ethanol effects on clock entrainment. Results:, Peak ethanol levels in the SCN and periphery occurred during the dark phase and coincided with the time when light normally induces phase-delays in mice. These delays were dose-dependently inhibited by chronic ethanol and its withdrawal. Chronic ethanol did not impede re-entrainment to a shifted light cycle but affected entrainment under the weak photic zeitgeber and disrupted the daily pattern of locomotor activity. Conclusions:, These results confirm that chronic ethanol consumption and withdrawal markedly impair circadian clock photic phase-resetting. Ethanol also disturbs the temporal structure of nighttime locomotor activity and photic entrainment. Collectively, these results suggest a direct action of ethanol on the SCN clock. [source] Differential Effects of Acute and Chronic Ethanol Exposure on Orexin Expression in the Perifornical Lateral HypothalamusALCOHOLISM, Issue 5 2010Irene Morganstern Background:, Recent reports support the involvement of hypothalamic orexigenic peptides in stimulating ethanol intake. Our previous studies have examined the effects of ethanol on hypothalamic peptide systems of the paraventricular nucleus (PVN) and identified a positive feedback loop in which PVN peptides, such as enkephalin and galanin, stimulate ethanol intake and ethanol, in turn, stimulates the expression of these peptides. Recently, orexin (OX), a peptide produced mainly by cells in the perifornical lateral hypothalamus (PFLH), has been shown to play an important role in mediating the rewarding aspects of ethanol intake. However, there is little evidence showing the effects that ethanol itself may have on the OX peptide system. In order to understand the feedback relationship between ethanol and the OX system, the current investigation was designed to measure OX gene expression in the PFLH following acute as well as chronic ethanol intake. Methods:, In the first experiment, Sprague,Dawley rats were trained to voluntarily consume a 2 or 9% concentration of ethanol, and the expression of OX mRNA in the PFLH was measured using quantitative real-time polymerase chain reaction (qRT-PCR). The second set of experiments tested the impact of acute oral gavage of 0.75 and 2.5 g/kg ethanol solution on OX expression in the PFLH using qRT-PCR, as well as radiolabeled in situ hybridization. Further tests using digoxigenin-labeled in situ hybridization and immunofluorescence histochemistry allowed us to more clearly distinguish the effects of acute ethanol on OX cells in the lateral hypothalamic (LH) versus perifornical (PF) regions. Results:, The results showed chronic consumption of ethanol versus water to dose-dependently reduce OX mRNA in the PFLH, with a larger effect observed in rats consuming 2.5 g/kg/d (,70%) or 1.0 g/kg/d (,50%) compared to animals consuming 0.75 g/kg/d (,40%). In contrast to chronic intake, acute oral ethanol compared to water significantly enhanced OX expression in the PFLH, and this effect occurred at the lower (0.75 g/kg) but not higher (2.5 g/kg) dose of ethanol. Additional analyses of the OX cells in the LH versus PF regions identified the former as the primary site of ethanol's stimulatory effect on the OX system. In the LH but not the PF, acute ethanol increased the density of OX-expressing and OX-immunoreactive neurons. The increase in gene expression was detected only at the lower dose of ethanol (0.75 g/kg), whereas the increase in OX peptide was seen only at the higher dose of ethanol (2.5 g/kg). Conclusion:, These results lead us to propose that OX neurons, while responsive to negative feedback signals from chronic ethanol consumption, are stimulated by acute ethanol administration, most potently in the LH where OX may trigger central reward mechanisms that promote further ethanol consumption. [source] Differential Effects of Chronic Ethanol Consumption and Withdrawal on Homer/Glutamate Receptor Expression in Subregions of the Accumbens and Amygdala of P RatsALCOHOLISM, Issue 11 2009Ilona Obara Background:, Homer proteins are constituents of scaffolding complexes that regulate the trafficking and function of central Group1 metabotropic glutamate receptors (mGluRs) and N -methyl- d -aspartate (NMDA) receptors. Research supports the involvement of these proteins in ethanol-induced neuroplasticity in mouse. In this study, we examined the effects of short versus long-term withdrawal from chronic ethanol consumption on Homer and glutamate receptor protein expression within striatal and amygdala subregions of selectively bred, alcohol-preferring P rats. Methods:, For 6 months, male P rats had concurrent access to 15% and 30% ethanol solutions under intermittent (IA: 4 d/wk) or continuous (CA: 7 d/wk) access conditions in their home cage. Rats were killed 24 hours (short withdrawal: SW) or 4 weeks (long withdrawal: LW) after termination of ethanol access, subregions of interest were micropunched and tissue processed for detection of Group1 mGluRs, NR2 subunits of the NMDA receptor and Homer protein expression. Results:, Within the nucleus accumbens (NAC), limited changes in NR2a and NR2b expression were detected in the shell (NACsh), whereas substantial changes were observed for Homer2a/b, mGluRs as well as NR2a and NR2b subunits in the core (NACc). Within the amygdala, no changes were detected in the basolateral subregion, whereas substantial changes, many paralleling those observed in the NACc, were detected in the central nucleus (CeA) subregion. In addition, most of the changes observed in the CeA, but not NACc, were present in both SW and LW rats. Conclusions:, Overall, these subregion specific, ethanol-induced increases in mGluR/Homer2/NR2 expression within the NAC and amygdala suggest changes in glutamatergic plasticity had taken place. This may be a result of learning and subsequent memory formation of ethanol's rewarding effects in these brain structures, which may, in part, mediate the chronic relapsing nature of alcohol abuse. [source] Ethanol Attenuates Spatial Memory Deficits and Increases mGlu1a Receptor Expression in the Hippocampus of Rats Exposed to Prenatal StressALCOHOLISM, Issue 8 2009Vincent Van Waes Background:, Although it is generally believed that chronic ethanol consumption impairs learning and memory, results obtained in experimental animals are not univocal, and there are conditions in which ethanol paradoxically improves cognitive functions. In the present work, we investigated the effects of prenatal stress and of chronic ethanol exposure during adulthood on spatial memory in rats. Methods:, Rats were subjected to a prenatal stress delivered as 3 daily 45-minute sections of restraint stress to the mothers during the last 10 days of pregnancy (PRS rats). After 7 months of ethanol exposure (ethanol 10%, oral intake), memory performances were evaluated in a spatial discrimination test in control and PRS male rats. Then, the oxidative damages and the expression of metabotropic glutamate (mGlu) receptors were assessed in their hippocampus. Results:, Chronic ethanol exposure resulted in a reduced performance in a spatial recognition task in control animals. Unexpectedly, however, the same treatment attenuated spatial memory deficits in rats that had been subjected to prenatal stress. This paradigm of ethanol administration did not produce detectable signs of oxidative damage in the hippocampus in either unstressed or PRS rats. Interestingly, ethanol intake resulted in differential effects in the expression of mGlu receptor subtypes implicated in mechanisms of learning and memory. In control rats, ethanol intake reduced mGlu2/3 and mGlu5 receptor levels in the hippocampus; in PRS rats, which exhibited a constitutive reduction in the levels of these mGlu receptor subtypes, ethanol increased the expression of mGlu1a receptors but did not change the expression of mGlu2/3 or mGlu5 receptors. Conclusion:, Our findings support the idea that stress-related events occurring before birth have long-lasting effects on brain function and behavior, and suggest that the impact of ethanol on cognition is not only dose- and duration-dependent, but also critically influenced by early life experiences. [source] Sizing up Ethanol-Induced Plasticity: The Role of Small and Large Conductance Calcium-Activated Potassium ChannelsALCOHOLISM, Issue 7 2009Patrick J. Mulholland Small (SK) and large conductance (BK) Ca2+ -activated K+ channels contribute to action potential repolarization, shape dendritic Ca2+spikes and postsynaptic responses, modulate the release of hormones and neurotransmitters, and contribute to hippocampal-dependent synaptic plasticity. Over the last decade, SK and BK channels have emerged as important targets for the development of acute ethanol tolerance and for altering neuronal excitability following chronic ethanol consumption. In this mini-review, we discuss new evidence implicating SK and BK channels in ethanol tolerance and ethanol-associated homeostatic plasticity. Findings from recent reports demonstrate that chronic ethanol produces a reduction in the function of SK channels in VTA dopaminergic and CA1 pyramidal neurons. It is hypothesized that the reduction in SK channel function increases the propensity for burst firing in VTA neurons and increases the likelihood for aberrant hyperexcitability during ethanol withdrawal in hippocampus. There is also increasing evidence supporting the idea that ethanol sensitivity of native BK channel results from differences in BK subunit composition, the proteolipid microenvironment, and molecular determinants of the channel-forming subunit itself. Moreover, these molecular entities play a substantial role in controlling the temporal component of ethanol-associated neuroadaptations in BK channels. Taken together, these studies suggest that SK and BK channels contribute to ethanol tolerance and adaptive plasticity. [source] Acute and Chronic Ethanol Modulate Dopamine D2-Subtype Receptor Responses in Ventral Tegmental Area GABA NeuronsALCOHOLISM, Issue 5 2009Kimberly H. Ludlow Background:, Ventral tegmental area (VTA) ,-aminobutyric acid (GABA) neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in drug reward. VTA GABA neuron firing rate is reduced by acute ethanol and enhanced by DA via D2 receptor activation. The objective of this study was to evaluate the role of D2 receptors in acute ethanol inhibition of VTA GABA neuron activity, as well as the adaptation of D2 receptors by chronic ethanol consumption. Methods:, Using electrophysiological methods, we evaluated the effects of intraperitoneal ethanol on DA activation of VTA GABA neurons, the effects of DA antagonists on ethanol inhibition of their firing rate, as well as adaptations in firing rate following chronic ethanol consumption. Using single cell quantitative RT-polymerase chain reaction (PCR), we evaluated the expression of VTA GABA neuron D2 receptors in rats consuming ethanol versus pair-fed controls. Results:, In acute ethanol studies, microelectrophoretic activation of VTA GABA neurons by DA was inhibited by acute intraperitoneal ethanol, and intravenous administration of the D2 antagonist eticlopride blocked ethanol suppression of VTA GABA neuron firing rate. In chronic ethanol studies, while there were no signs of withdrawal at 24 hours, or significant adaptation in firing rate or response to acute ethanol, there was a significant down-regulation in the expression of D2 receptors in ethanol-consuming rats versus pair-fed controls. Conclusions:, Inhibition of DA activation of VTA GABA neuron firing rate by ethanol, as well as eticlopride block of ethanol inhibition of VTA GABA neuron firing rate, suggests an interaction between ethanol and DA neurotransmission via D2 receptors, perhaps via enhanced DA release in the VTA subsequent to ethanol inhibition of GABA neurons. Down-regulation of VTA GABA neuron D2 receptors by chronic ethanol might result from persistent DA release onto GABA neurons. [source] S-Adenosyl-L-Methionine Co-administration Prevents the Ethanol-Elicited Dissociation of Hepatic Mitochondrial Ribosomes in Male RatsALCOHOLISM, Issue 1 2009Peter Sykora Background:, Chronic ethanol feeding to male rats has been shown to result in decreased mitochondrial translation, depressed respiratory complex levels and mitochondrial respiration rates. In addition, ethanol consumption has been shown to result in an increased dissociation of mitoribosomes. S-adenosyl-L-methionine (SAM) is required for the assembly and subsequent stability of mitoribosomes and is depleted during chronic ethanol feeding. The ability of dietary SAM co-administration to prevent these ethanol-elicited lesions was investigated. Methods:, Male Sprague-Dawley rats were fed a nutritionally adequate liquid diet with ethanol comprising 36% of the calories according to a pair-fed design for 28 days. For some animals, SAM was supplemented in the diet at 200 mg/l. Liver mitochondria were prepared and mitoribosomes isolated. Respiration rates, ATP levels, respiratory complex levels, and the extent of mitoribosome dissociation were determined. Results:, Twenty-eight days of ethanol feeding were found to result in decreased SAM content, depressed respiration, and increased mitoribosome dissociation. No changes in mitochondrial protein content; levels of respiratory complexes I, III, and V; complex I activities; and ATP levels were detected. Co-administration of SAM in the diet was found to prevent ethanol-induced SAM depletion, respiration decreases and mitoribosome dissociation. Conclusions:, Taken together, these findings suggest (1) that mitoribosome dissociation precedes respiratory complex depressions in alcoholic animals and (2) that dietary supplementation of SAM prevents some of the early mitochondrial lesions associated with chronic ethanol consumption. [source] Influence of Age at Drinking Onset on Long-Term Ethanol Self-Administration With Deprivation and Stress PhasesALCOHOLISM, Issue 7 2005Sören Siegmund Background: Onset of alcohol use during adolescence has potentially long-lasting consequences, e.g., prospective alcohol dependence. To obtain new insight into the effects of early chronic ethanol consumption, we compared the drinking behavior of two adult male Wistar rat groups: one that initiated alcohol consumption during adolescence (adolescent group) and the other that initiated their drinking during adulthood (adult group) in a model of long-term alcohol self-administration. We investigated the magnitude of the effects of deprivation and stress on alcohol intake and the influence of these events on the alcohol drinking behavior across time. Methods: Heterogeneous Wistar rats aged 31 days (adolescents) and 71 days (adults) were given ad libitum access to water, as well as 5% and 20% ethanol solutions during an observation period of 30 wk. A deprivation phase of 14 days was instituted after eight wk of access to alcohol. After 16 and 26 wk of alcohol access, all animals were subjected for three consecutive days to forced swimming and electric foot shocks, respectively. Results: At the onset of drinking, adolescent animals consumed less alcohol and showed lower preference than adults. The deprivation phase was followed by increased intake of highly concentrated ethanol solution without appreciable differences between age groups. Repeated swim stress produced a slight increase in ethanol consumption in both animal groups; however, alcohol intake was not significantly different between groups, whereas the foot shock stress-induced increase in alcohol intake was significantly higher in the animal group that initiated alcohol consumption during adolescence. After swim stress, the drinking behavior of the adolescent group resembled that of the adult group. In particular, the adolescent group increased their preference for 20% ethanol solution for the remainder of the experiment. Conclusions: Age of voluntary alcohol drinking onset does not appear to be a strong predictor for prospective alcohol intake and relapse-like drinking behavior under the present experimental conditions. However, male Wistar rats that initiated alcohol consumption during adolescence seem to be more susceptible to acute stressor-specific effects in terms of alcohol consumption. [source] Ethanol Modulation of TNF-alpha Biosynthesis and Signaling in Endothelial Cells: Synergistic Augmentation of TNF-alpha Mediated Endothelial Cell Dysfunctions by Chronic EthanolALCOHOLISM, Issue 6 2005Corinne Luedemann Despite reported cardio-protective effects of low alcohol intake, chronic alcoholism remains a risk factor in the pathogenesis of coronary artery disease. Dose related bimodal effects of alcohol on cardiovascular system might reflect contrasting influences of light versus heavy alcohol consumption on the vascular endothelium. Chronic ethanol induced damage to various organs has been linked to the increased release of TNF-alpha (TNF). We have previously shown that TNF, expressed at the sites of arterial injury, suppresses re-endothelialization of denuded arteries and inhibits endothelial cell (EC) proliferation in vitro. Here we report that in vitro chronic ethanol exposure enhances agonist-induced TNF mRNA and protein expression in EC. Ethanol-mediated increment in TNF expression involves increased de novo transcription without affecting mRNA stability. DNA binding assays revealed that ethanol-induced TNF up regulation was AP1 dependent. Functionally, TNF induced EC dysfunction, including reduced proliferation, migration and cyclin A expression, were all markedly enhanced in the presence of ethanol. Additionally, expression of cyclin D1 was significantly attenuated in cells co-treated with TNF and ethanol while each treatment alone had little effect on cyclin D1 expression. Furthermore, exposure to ethanol potentiated and prolonged agonist-induced activation of JNK. Inhibition of JNK by over-expression of dominant negative JNK1 substantially reversed ethanol/TNF-mediated inhibition of cyclin A expression and EC proliferation, suggesting modulation of JNK1 signaling as the mechanism for ethanol/TNF-induced EC dysfunctions. Taken together, these data indicate that chronic ethanol consumption may negatively influence post angioplasty re-endothelialization thereby contributing to the development of restenosis. [source] Cardiac Overexpression of Alcohol Dehydrogenase Exacerbates Cardiac Contractile Dysfunction, Lipid Peroxidation, and Protein Damage After Chronic Ethanol IngestionALCOHOLISM, Issue 7 2003Kadon K. Hintz Background: Alcoholic cardiomyopathy is manifested as ventricular dysfunction, although its specific toxic mechanism remains obscure. This study was designed to examine the impact of enhanced acetaldehyde exposure on cardiac function via cardiac-specific overexpression of alcohol dehydrogenase (ADH) after alcohol intake. Methods: ADH transgenic and wild-type FVB mice were placed on a 4% alcohol or control diet for 8 weeks. Mechanical and intracellular Ca2+ properties were evaluated in cardiac myocytes. Levels of acetaldehyde, lipid peroxidation, and protein carbonyl formation were determined. Results: FVB and ADH mice consuming ethanol exhibited elevated blood ethanol/acetaldehyde, cardiac acetaldehyde, and cardiac hypertrophy compared with non-ethanol-consuming mice. However, the levels of cardiac acetaldehyde and hypertrophy were significantly greater in ADH ethanol-fed mice than FVB ethanol-fed mice. ADH transgene itself did not affect mechanical and intracellular Ca2+ properties with the exception of reduced resting intracellular Ca2+ and Ca2+ re-sequestration at low pace frequency. Myocytes from ethanol-fed mice showed significantly depressed peak shortening, velocity of shortening/relengthening, rise of intracellular Ca2+ transients, and sarco(endo)plasmic reticulum Ca2+ load associated with similar duration of shortening/relengthening compared with myocytes from control mice. Strikingly, the ethanol-induced mechanical and intracellular Ca2+ defects were exacerbated in ADH myocytes compared with the FVB group except velocity of shortening/relengthening. The lipid peroxidation end products malondialdehyde and protein carbonyl formation were significantly elevated in both livers and hearts after chronic ethanol consumption, with the cardiac lipid and protein damage being exaggerated by ADH transgene. Conclusion: These data suggest that increased cardiac acetaldehyde exposure due to ADH transgene may play an important role in cardiac contractile dysfunctions associated with lipid and protein damage after alcohol intake. [source] Reduction of Perforin, Granzyme B, and Cytokine Interferon , by Ethanol in Male Fischer 344 RatsALCOHOLISM, Issue 4 2003Madhavi Dokur Background: Chronic alcohol consumption can impair the immune system and predispose individuals to an increased risk of cancer and infection. Natural killer (NK) cells are the first line of defense against viral, bacterial, and fungal infections and play an important role in cellular resistance to malignancy and tumor metastasis. We have shown previously that ethanol administration suppresses NK cell cytolytic activity in male Fischer rats. This study analyzed the effects of ethanol on perforin, granzyme B, and the cytokine interferon (IFN)-,, factors that modulate NK cell cytolytic activity, to understand the molecular mechanism involved in ethanol's suppression of NK cell activity. Methods: A group of male Fischer rats was fed an ethanol-containing diet (8.7% v/v), whereas a control group was pair-fed an isocaloric diet. At the end of 2 weeks, animals were decapitated, and spleen tissues were immediately removed and used for analysis of NK cell cytolytic activity, perforin, granzyme B, and IFN-, messenger RNA (mRNA) or protein levels. The mRNA levels of perforin, granzyme B, and IFN-, were evaluated by quantitative real-time polymerase chain reaction, and protein levels of these factors were analyzed by Western blot, enzyme-linked immunosorbent assay, or enzymatic activity assay. Results: Ethanol reduced the NK cell cytolytic activity and decreased the mRNA expression of perforin, granzyme B, and IFN-, in ethanol-fed animals when compared with pair-fed animals. Ethanol also significantly reduced the protein levels of perforin and IFN-, and the enzyme activity of granzyme B in alcohol-fed animals as compared with pair-fed animals. Conclusions: These data suggest that chronic ethanol consumption may suppress NK cell cytolytic activity in male Fischer rats by decreasing the production, activity, or both of granzyme B, perforin, and IFN-,. [source] Expression and Cytoskeletal Association of Integrin Subunits Is Selectively Increased in Rat Perivenous Hepatocytes After Chronic Ethanol AdministrationALCOHOLISM, Issue 12 2001Courtney S. Schaffert Background: For normal function and survival, hepatocytes require proper cell,extracellular matrix (ECM) contacts mediated by integrin receptors and focal adhesions. Previous studies have shown that chronic ethanol consumption selectively impairs perivenous (PV) hepatocyte attachment and spreading on various ECM substrates but increases expression of the ,1 integrin subunit, the common , subunit for two major hepatocyte-ECM receptors, ,1,1 and ,5,1 integrins. This study examined the effects of ethanol treatment on the expression and cytoskeletal distribution of ,1, ,5, and ,1 integrin subunits, the epidermal growth factor receptor (EGF-R), and the cytoskeletal proteins focal adhesion kinase, paxillin, vinculin, and actin in periportal and PV hepatocytes. Methods: Periportal and PV hepatocytes were isolated from control and ethanol-fed rats. For expression analysis, lysates were examined by SDS-PAGE and immunoblotting procedures. For cytoskeletal distribution studies, Triton-soluble and -insoluble (cytoskeletal) fractions from hepatocytes cultured on collagen IV were analyzed by SDS-PAGE and immunoblotting. Results: Chronic ethanol administration caused PV-specific increases in expression and cytoskeletal association of the integrin subunits. Although ethanol treatment did not affect expression of the EGF-R in either cell type, it did increase the association of the EGF-R with the cytoskeleton selectively in PV hepatocytes. Ethanol treatment had no significant effect on either the expression or the cytoskeletal distribution of focal adhesion kinase, paxillin, vinculin, or actin in either cell type. Conclusions: The increases in integrin expression and cytoskeletal association observed after chronic ethanol administration suggest that a process downstream of integrin-ECM interactions is impaired selectively in PV hepatocytes, possibly involving altered focal adhesion assembly or turnover, processes essential for efficient cell-ECM adhesion. Alterations in these processes could contribute to the impaired hepatocyte function and structure observed after chronic ethanol administration. [source] Inhibition of bacterial translocation by chronic ethanol consumption in the rat,APMIS, Issue 12 2001VALERIA BENDER BRAULIO Chronic ethanol ingestion has been associated with small intestine morphological changes, disrupted host mucosal defenses and bacterial overgrowth. Since bacterial translocation (BT) may result from such alterations, we have investigated the potential effect of chronic ethanol consumption on BT. For this purpose, male Wistar rats were fed a liquid diet containing 5% v/v ethanol for 4 weeks (EG, n=16), and a pair-fed group received equal daily amounts of calories in a similar diet without ethanol (PFG, n=16). On experimental day 29, distal ileum ligature and small intestine inoculation of a tetracycline-resistant E. coli strain (Tc®E. coli R6) followed by duodenal ligature was performed. After 1 or 5 h post inoculation, mesenteric lymph nodes, liver, spleen and kidney were excised. Unexpectedly, rats of the EG presented markedly less BT to the mesenteric lymph nodes (p<0.001) and to the other organs examined compared to rats of the PFG. This BT inhibition was observed at 1 and 5 h after bacterial inoculation, and may be attributed exclusively to chronic ethanol ingestion. Since alcoholism is well known to decrease host immunity, these results suggest that other factors, independent of the immune function, may be involved in the BT inhibition observed in this study. [source] Gender-specific vascular effects elicited by chronic ethanol consumption in rats: a role for inducible nitric oxide synthaseBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2008C R Tirapelli Background and purpose: Epidemiological data suggest that the risk of ethanol-associated cardiovascular disease is greater in men than in women. This study investigates the mechanisms underlying gender-specific vascular effects elicited by chronic ethanol consumption in rats. Experimental approach: Vascular reactivity experiments using standard muscle bath procedures were performed on isolated thoracic aortae from rats. mRNA and protein for inducible NO synthase (iNOS) and for endothelial NOS (eNOS) was assessed by RT-PCR or western blotting, respectively. Key results: In male rats, chronic ethanol consumption enhanced phenylephrine-induced contraction in both endothelium-intact and denuded aortic rings. However, in female rats, chronic ethanol consumption enhanced phenylephrine-induced contraction only in endothelium denuded aortic rings. After pre-incubation of endothelium-intact rings with L -NAME, both male and female ethanol-treated rats showed larger phenylephrine-induced contractions in aortic rings, compared to the control group. Acetylcholine-induced relaxation was not affected by ethanol consumption. The effects of ethanol on responses to phenylephrine were similar in ovariectomized (OVX) and intact (non-OVX) female rats. In the presence of aminoguanidine, but not 7-nitroindazole, the contractions to phenylephrine in rings from ethanol-treated female rats were greater than that found in control tissues in the presence of the inhibitors. mRNA levels for eNOS and iNOS were not altered by ethanol consumption. Ethanol intake reduced eNOS protein levels and increased iNOS protein levels in aorta from female rats. Conclusions and implications: Gender differences in the vascular effects elicited by chronic ethanol consumption were not related to ovarian hormones but seemed to involve the upregulation of iNOS. British Journal of Pharmacology (2008) 153, 468,479; doi:10.1038/sj.bjp.0707589; published online 26 November 2007 [source] |