| |||
Chronic Ethanol (chronic + ethanol)
Terms modified by Chronic Ethanol Selected AbstractsChronic Ethanol Disrupts Circadian Photic Entrainment and Daily Locomotor Activity in the MouseALCOHOLISM, Issue 7 2010Allison J. Brager Background:, Chronic ethanol abuse is associated with disrupted circadian rhythms and sleep. Ethanol administration impairs circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on circadian timing. Here, we extend previous studies to explore the effects of chronic forced ethanol on photic phase-resetting, photic entrainment, and daily locomotor activity patterns in C57BL/6J mice. Methods:, First, microdialysis was used to characterize the circadian patterns of ethanol uptake in the suprachiasmatic (SCN) circadian clock and correlate this with systemic ethanol levels and episodic drinking of 10 or 15% ethanol. Second, the effects of chronic forced ethanol drinking and withdrawal on photic phase-delays of the circadian activity rhythm were assessed. Third, the effects of chronic ethanol drinking on entrainment to a weak photic zeitgeber (1 minute of 25 lux intensity light per day) were assessed. This method was used to minimize any masking actions of light that could mask ethanol effects on clock entrainment. Results:, Peak ethanol levels in the SCN and periphery occurred during the dark phase and coincided with the time when light normally induces phase-delays in mice. These delays were dose-dependently inhibited by chronic ethanol and its withdrawal. Chronic ethanol did not impede re-entrainment to a shifted light cycle but affected entrainment under the weak photic zeitgeber and disrupted the daily pattern of locomotor activity. Conclusions:, These results confirm that chronic ethanol consumption and withdrawal markedly impair circadian clock photic phase-resetting. Ethanol also disturbs the temporal structure of nighttime locomotor activity and photic entrainment. Collectively, these results suggest a direct action of ethanol on the SCN clock. [source] Effect of Chronic Ethanol on Enkephalin in the Hypothalamus and Extra-Hypothalamic AreasALCOHOLISM, Issue 5 2010Guo-Qing Chang Background:, Ethanol may be consumed for reasons such as reward, anxiety reduction, or caloric content, and the opioid enkephalin (ENK) appears to be involved in many of these functions. Previous studies in Sprague,Dawley rats have demonstrated that ENK in the hypothalamic paraventricular nucleus (PVN) is stimulated by voluntary consumption of ethanol. This suggests that this opioid peptide may be involved in promoting the drinking of ethanol, consistent with our recent findings that PVN injections of ENK analogs stimulate ethanol intake. To broaden our understanding of how this peptide functions throughout the brain to promote ethanol intake, we measured, in rats trained to drink 9% ethanol, the expression of the ENK gene in additional brain areas outside the hypothalamus, namely, the ventral tegmental area (VTA), nucleus accumbens shell (NAcSh) and core (NAcC), medial prefrontal cortex (mPFC), and central nucleus of the amygdala (CeA). Methods:, In the first experiment, the brains of rats chronically drinking 1 g/kg/d ethanol, 3 g/kg/d ethanol, or water were examined using real-time quantitative polymerase chain reaction (qRT-PCR). In the second experiment, a more detailed, anatomic analysis of changes in gene expression, in rats chronically drinking 3 g/kg/d ethanol compared to water, was performed using radiolabeled in situ hybridization (ISH). The third experiment employed digoxigenin-labeled ISH (DIG) to examine changes in the density of cells expressing ENK and, for comparison, dynorphin (DYN) in rats chronically drinking 3 g/kg/d ethanol versus water. Results:, With qRT-PCR, the rats chronically drinking ethanol plus water compared to water alone showed significantly higher levels of ENK mRNA, not only in the PVN but also in the VTA, NAcSh, NAcC, and mPFC, although not in the CeA. Using radiolabeled ISH, levels of ENK mRNA in rats drinking ethanol were found to be elevated in all areas examined, including the CeA. The experiment using DIG confirmed this effect of ethanol, showing an increase in density of ENK-expressing cells in all areas studied. It additionally revealed a similar change in DYN mRNA in the PVN, mPFC, and CeA, although not in the NAcSh or NAcC. Conclusions:, While distinguishing the NAc as a site where ENK and DYN respond differentially, these findings lead us to propose that these opioids, in response to voluntary ethanol consumption, are generally elevated in extra-hypothalamic as well as hypothalamic areas, possibly to carry out specific area-related functions that, in turn, drive animals to further consume ethanol. These functions include calorie ingestion in the PVN, reward and motivation in the VTA and NAcSh, response-reinforcement learning in the NAcC, stress reduction in the CeA, and behavioral control in the mPFC. [source] Acute and Chronic Ethanol Modulate Dopamine D2-Subtype Receptor Responses in Ventral Tegmental Area GABA NeuronsALCOHOLISM, Issue 5 2009Kimberly H. Ludlow Background:, Ventral tegmental area (VTA) ,-aminobutyric acid (GABA) neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in drug reward. VTA GABA neuron firing rate is reduced by acute ethanol and enhanced by DA via D2 receptor activation. The objective of this study was to evaluate the role of D2 receptors in acute ethanol inhibition of VTA GABA neuron activity, as well as the adaptation of D2 receptors by chronic ethanol consumption. Methods:, Using electrophysiological methods, we evaluated the effects of intraperitoneal ethanol on DA activation of VTA GABA neurons, the effects of DA antagonists on ethanol inhibition of their firing rate, as well as adaptations in firing rate following chronic ethanol consumption. Using single cell quantitative RT-polymerase chain reaction (PCR), we evaluated the expression of VTA GABA neuron D2 receptors in rats consuming ethanol versus pair-fed controls. Results:, In acute ethanol studies, microelectrophoretic activation of VTA GABA neurons by DA was inhibited by acute intraperitoneal ethanol, and intravenous administration of the D2 antagonist eticlopride blocked ethanol suppression of VTA GABA neuron firing rate. In chronic ethanol studies, while there were no signs of withdrawal at 24 hours, or significant adaptation in firing rate or response to acute ethanol, there was a significant down-regulation in the expression of D2 receptors in ethanol-consuming rats versus pair-fed controls. Conclusions:, Inhibition of DA activation of VTA GABA neuron firing rate by ethanol, as well as eticlopride block of ethanol inhibition of VTA GABA neuron firing rate, suggests an interaction between ethanol and DA neurotransmission via D2 receptors, perhaps via enhanced DA release in the VTA subsequent to ethanol inhibition of GABA neurons. Down-regulation of VTA GABA neuron D2 receptors by chronic ethanol might result from persistent DA release onto GABA neurons. [source] Actions of Acute and Chronic Ethanol on Presynaptic TerminalsALCOHOLISM, Issue 2 2006Marisa Roberto This article presents the proceedings of a symposium entitled "The Tipsy Terminal: Presynaptic Effects of Ethanol" (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a "hot" topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol's behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication, alcohol abuse, and alcoholism. [source] Ethanol Modulation of TNF-alpha Biosynthesis and Signaling in Endothelial Cells: Synergistic Augmentation of TNF-alpha Mediated Endothelial Cell Dysfunctions by Chronic EthanolALCOHOLISM, Issue 6 2005Corinne Luedemann Despite reported cardio-protective effects of low alcohol intake, chronic alcoholism remains a risk factor in the pathogenesis of coronary artery disease. Dose related bimodal effects of alcohol on cardiovascular system might reflect contrasting influences of light versus heavy alcohol consumption on the vascular endothelium. Chronic ethanol induced damage to various organs has been linked to the increased release of TNF-alpha (TNF). We have previously shown that TNF, expressed at the sites of arterial injury, suppresses re-endothelialization of denuded arteries and inhibits endothelial cell (EC) proliferation in vitro. Here we report that in vitro chronic ethanol exposure enhances agonist-induced TNF mRNA and protein expression in EC. Ethanol-mediated increment in TNF expression involves increased de novo transcription without affecting mRNA stability. DNA binding assays revealed that ethanol-induced TNF up regulation was AP1 dependent. Functionally, TNF induced EC dysfunction, including reduced proliferation, migration and cyclin A expression, were all markedly enhanced in the presence of ethanol. Additionally, expression of cyclin D1 was significantly attenuated in cells co-treated with TNF and ethanol while each treatment alone had little effect on cyclin D1 expression. Furthermore, exposure to ethanol potentiated and prolonged agonist-induced activation of JNK. Inhibition of JNK by over-expression of dominant negative JNK1 substantially reversed ethanol/TNF-mediated inhibition of cyclin A expression and EC proliferation, suggesting modulation of JNK1 signaling as the mechanism for ethanol/TNF-induced EC dysfunctions. Taken together, these data indicate that chronic ethanol consumption may negatively influence post angioplasty re-endothelialization thereby contributing to the development of restenosis. [source] Cellular Adaptation to Chronic Ethanol Results in Altered Compartmentalization and Function of the Scaffolding Protein RACK1ALCOHOLISM, Issue 10 2003Alicia J. Vagts Background: Previously, we found that acute ethanol induces the translocation of the scaffolding protein RACK1 to the nucleus. Recently, we found that nuclear RACK1 mediates acute ethanol induction of immediate early gene c-fos expression. Alterations in gene expression are thought to lead to long-term changes that ultimately contribute to the development of alcohol addiction and toxicity. Therefore, we sought to determine the effects of chronic exposure of cells to ethanol on the cellular compartmentalization of RACK1 and on c-fos messenger RNA (mRNA) and protein expression. Methods: Rat C6 glioma cells were used as the cell culture model. Immunohistochemistry was implemented to visualize the localization of RACK1 and to monitor the protein level of c-fos. Reverse-transcription polymerase chain reaction was used to measure c- fos mRNA levels. The Tat-protein transduction method was used to transduce recombinant Tat-RACK1 into cells as previously described. Results: Chronic exposure of cells to 200 mM ethanol for 24 and 48 hr resulted in the gradual re-distribution of RACK1 out of the nucleus. It is interesting to note that acute ethanol re-challenge immediately after chronic treatment did not result in RACK1 translocation to the nucleus, and nuclear compartmentalization of RACK1 in response to acute ethanol was detected only after 24 hr of withdrawal. Similar patterns were obtained for c-fos expression. Chronic exposure to ethanol did not result in an increase in mRNA or protein levels of c-fos. Furthermore, acute ethanol exposure did not increase c-fos protein levels in cells that were first treated chronically with ethanol. However, transduction of exogenous RACK1 expressed as a Tat-fusion protein was able to rescue c- fos mRNA expression after chronic ethanol exposure. Conclusions: Our data suggest that RACK1 nuclear compartmentalization and ethanol-induced c-fos expression are transient and are desensitized to ethanol during prolonged exposure to high concentrations. The desensitization is temporary, and RACK1 can respond to acute ethanol treatment after a 24-hr withdrawal period. Our data further suggest that the altered compartmentalization of RACK1 leads to differences in c-fos expression upon acute or chronic exposure to ethanol. In summary, RACK1 is an important molecular mediator of the acute and chronic actions of ethanol on the expression of c-fos. These findings could have implications for the molecular signaling pathways leading to pathologic states associated with alcoholism, including toxicity. [source] Chronic Ethanol Disrupts Circadian Photic Entrainment and Daily Locomotor Activity in the MouseALCOHOLISM, Issue 7 2010Allison J. Brager Background:, Chronic ethanol abuse is associated with disrupted circadian rhythms and sleep. Ethanol administration impairs circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on circadian timing. Here, we extend previous studies to explore the effects of chronic forced ethanol on photic phase-resetting, photic entrainment, and daily locomotor activity patterns in C57BL/6J mice. Methods:, First, microdialysis was used to characterize the circadian patterns of ethanol uptake in the suprachiasmatic (SCN) circadian clock and correlate this with systemic ethanol levels and episodic drinking of 10 or 15% ethanol. Second, the effects of chronic forced ethanol drinking and withdrawal on photic phase-delays of the circadian activity rhythm were assessed. Third, the effects of chronic ethanol drinking on entrainment to a weak photic zeitgeber (1 minute of 25 lux intensity light per day) were assessed. This method was used to minimize any masking actions of light that could mask ethanol effects on clock entrainment. Results:, Peak ethanol levels in the SCN and periphery occurred during the dark phase and coincided with the time when light normally induces phase-delays in mice. These delays were dose-dependently inhibited by chronic ethanol and its withdrawal. Chronic ethanol did not impede re-entrainment to a shifted light cycle but affected entrainment under the weak photic zeitgeber and disrupted the daily pattern of locomotor activity. Conclusions:, These results confirm that chronic ethanol consumption and withdrawal markedly impair circadian clock photic phase-resetting. Ethanol also disturbs the temporal structure of nighttime locomotor activity and photic entrainment. Collectively, these results suggest a direct action of ethanol on the SCN clock. [source] Long-Term Ethanol Exposure Impairs Neuronal Differentiation of Human Neuroblastoma Cells Involving Neurotrophin-Mediated Intracellular Signaling and in Particular Protein Kinase CALCOHOLISM, Issue 3 2009Julian Hellmann Background:, Revealing the molecular changes in chronic ethanol-impaired neuronal differentiation may be of great importance for understanding ethanol-related pathology in embryonic development but also in the adult brain. In this study, both acute and long-term effects of ethanol on neuronal differentiation of human neuroblastoma cells were investigated. We focused on several aspects of brain-derived neurotrophic factor (BDNF) signaling because BDNF activates the extracellular signal-regulated kinase (ERK) cascade, promoting neuronal differentiation including neurite outgrowth. Methods:, The effects of ethanol exposure on morphological differentiation, cellular density, neuronal marker proteins, basal ERK activity, and ERK responsiveness to BDNF were measured over 2 to 4 weeks. qRT-PCR and Western blotting were performed to investigate the expression of neurotrophin receptor tyrosin kinase B (TrkB), members of the ERK-cascade, protein kinase C (PKC) isoforms and Raf-Kinase-Inhibitor-Protein (RKIP). Results:, Chronic ethanol interfered with the development of a neuronal network consisting of cell clusters and neuritic bundles. Furthermore, neuronal and synaptic markers were reduced, indicating impaired neuronal differentiation. BDNF-mediated activation of the ERK cascade was found to be continuously impaired by ethanol. This could not be explained by expressional changes monitored for TrkB, Raf-1, MEK, and ERK. However, BDNF also activates PKC signaling which involves RKIP, which finally leads to ERK activation as well. Therefore, we hypothesized that ethanol impairs this branch of BDNF signaling. Indeed, both PKC and RKIP were significantly down-regulated. Conclusions:, Chronic ethanol exposure impaired neuronal differentiation of neuroblastoma cells and BDNF signaling, particularly the PKC-dependent branch. RKIP, acting as a signaling switch at the merge of the PKC cascade and the Raf/MEK/ERK cascade, was associated with neuronal differentiation and significantly reduced in ethanol treatment. Moreover, PKC expression itself was even more strongly reduced. In contrast, members of the Raf-1/MEK/ERK cascade were less affected and the observed changes were not associated with impaired differentiation. Thus, reduced RKIP and PKC levels and subsequently reduced positive feedback on ERK activation provide an explanation for the striking effects of long-term ethanol exposure on BDNF signal transduction and neuronal differentiation, respectively. [source] Ethanol Modulation of TNF-alpha Biosynthesis and Signaling in Endothelial Cells: Synergistic Augmentation of TNF-alpha Mediated Endothelial Cell Dysfunctions by Chronic EthanolALCOHOLISM, Issue 6 2005Corinne Luedemann Despite reported cardio-protective effects of low alcohol intake, chronic alcoholism remains a risk factor in the pathogenesis of coronary artery disease. Dose related bimodal effects of alcohol on cardiovascular system might reflect contrasting influences of light versus heavy alcohol consumption on the vascular endothelium. Chronic ethanol induced damage to various organs has been linked to the increased release of TNF-alpha (TNF). We have previously shown that TNF, expressed at the sites of arterial injury, suppresses re-endothelialization of denuded arteries and inhibits endothelial cell (EC) proliferation in vitro. Here we report that in vitro chronic ethanol exposure enhances agonist-induced TNF mRNA and protein expression in EC. Ethanol-mediated increment in TNF expression involves increased de novo transcription without affecting mRNA stability. DNA binding assays revealed that ethanol-induced TNF up regulation was AP1 dependent. Functionally, TNF induced EC dysfunction, including reduced proliferation, migration and cyclin A expression, were all markedly enhanced in the presence of ethanol. Additionally, expression of cyclin D1 was significantly attenuated in cells co-treated with TNF and ethanol while each treatment alone had little effect on cyclin D1 expression. Furthermore, exposure to ethanol potentiated and prolonged agonist-induced activation of JNK. Inhibition of JNK by over-expression of dominant negative JNK1 substantially reversed ethanol/TNF-mediated inhibition of cyclin A expression and EC proliferation, suggesting modulation of JNK1 signaling as the mechanism for ethanol/TNF-induced EC dysfunctions. Taken together, these data indicate that chronic ethanol consumption may negatively influence post angioplasty re-endothelialization thereby contributing to the development of restenosis. [source] Grape Polyphenols Inhibit Chronic Ethanol-Induced COX-2 mRNA Expression in Rat BrainALCOHOLISM, Issue 3 2002Agnes Simonyi Background: Chronic ethanol has been shown to increase oxidative stress leading to neurodegenerative changes in the brain. Oxidative stress may up-regulate extracellular signal regulated kinases (ERK1/2) and, subsequently, the arachidonic acid cascade mediated by phospholipase A2 (PLA2) and cyclooxygenase (COX-2). Our earlier study showed that grape polyphenols (GP) could ameliorate oxidative damage to synaptic membrane proteins due to chronic ethanol treatment. This study was aimed at examining the effects of GP on mRNA expression of ERK1/2, cytosolic PLA2 (cPLA2), and COX-2 in different brain regions after chronic ethanol treatment. Methods: Male Sprague-Dawley rats were fed a Lieber-DeCarli liquid diet with ethanol or isocaloric amount of maltose, with or without GP for 2 months. In situ hybridization was carried out using coronal brain sections through the hippocampus. Results: Quantitative in situ hybridization showed no changes in ERK1 and cPLA2 mRNA levels in cortical areas and hippocampus after ethanol and/or GP administration. However, a decrease in ERK2 and an increase in COX-2 mRNA level was found in the hippocampus of ethanol-treated animals. GP completely inhibited the increase in COX-2 due to ethanol treatment. Conclusion: Increase in COX-2 expression may be an underlying mechanism for the increase in oxidative stress induced by chronic ethanol administration. Dietary supplementation of GP may have a beneficial role in inhibiting certain alcohol effects. [source] Repeated withdrawal from ethanol spares contextual fear conditioning and spatial learning but impairs negative patterning and induces over-responding: evidence for effect on frontal cortical but not hippocampal function?EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006Gilyana G. Borlikova Abstract Repeated exposure of rats to withdrawal from chronic ethanol reduces hippocampal long-term potentiation and gives rise to epileptiform-like activity in hippocampus. We investigated whether such withdrawal experience also affects learning in tasks thought to be sensitive to hippocampal damage. Rats fed an ethanol-containing diet for 24 days with two intermediate 3-day withdrawal episodes, resulting in intakes of 13,14 g/kg ethanol per day, showed impaired negative patterning discrimination compared with controls and animals that had continuous 24-day ethanol treatment, but did not differ from these animals in the degree of contextual freezing 24 h after training or in spatial learning in the Barnes maze. Repeatedly withdrawn animals also showed increased numbers of responses in the period immediately before reinforcement became available in an operant task employing a fixed-interval schedule although overall temporal organization of responding was unimpaired. Thus, in our model of repeated withdrawal from ethanol, previously observed changes in hippocampal function did not manifest at the behavioural level in the tests employed. The deficit seen after repeated withdrawal in the negative patterning discrimination and over-responding in the fixed-interval paradigm might be related to the changes in the functioning of the cortex after withdrawal. [source] Impaired fear conditioning but enhanced seizure sensitivity in rats given repeated experience of withdrawal from alcoholEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2001D. N. Stephens Abstract Repeated experience of withdrawal from chronic alcohol treatment increases sensitivity to seizures. It has been argued by analogy that negative affective consequences of withdrawal also sensitize, but repeated experience of withdrawal from another sedative-hypnotic drug, diazepam, results in amelioration of withdrawal anxiety and aversiveness. We tested whether giving rats repeated experience of withdrawal from alcohol altered their ability to acquire a conditioned emotional response (CER). Male Hooded Lister rats were fed a nutritionally complete liquid diet as their only food source. Different groups received control diet, or diet containing 7% ethanol. Rats receiving ethanol diet were fed for either 24 days (Single withdrawal, SWD), or 30 days, with two periods of 3 days, starting at day 11, and 21, in which they received control diet (Repeated withdrawal, RWD). All rats were fed lab chow at the end of their liquid diet feeding period. Starting 12 days after the final withdrawal, groups of Control, SWD and RWD rats were given pentylenetetrazole (PTZ; 30 mg/kg, i.p.) three times a week, and scored for seizures. The occurrence of two successive Stage 5 seizures was taken as the criterion for full PTZ kindling. Other groups of control, SWD and RWD rats were trained to operate levers to obtain food, and were then exposed, in a fully counterbalanced design, to light and tone stimuli which predicted unavoidable footshock (CS+), or which had no consequences (CS,). Rats consumed approximately 17.5 g/kg/day of ethanol, resulting in blood alcohol levels of approximately 100 mg/dL. Repeated administration of PTZ resulted in increasing seizure scores. RWD rats achieved kindling criterion faster than either Control or SWD rats. No differences were seen in the groups in flinch threshold to footshock (0.3 mA). At a shock intensity of 0.35 mA, Control, but not RWD or SWD rats showed significant suppression to the CS+ CS, presentation did not affect response rates. The three groups differed in their response to pairing the CS+ with increasing shock levels, the Controls remaining more sensitive to the CS+. SWD rats showed significant suppression of lever pressing during CS+ presentations only at 0.45 and 0.5 mA, and RWD rats only at 0.5 mA. Giving rats repeated experience of withdrawal from chronic ethanol results in increased sensitivity to PTZ kindling, but reduces their ability to acquire a CER. Withdrawal kindling of sensitivity to anxiogenic events does not seem to occur under circumstances which give rise to kindling of seizure sensitivity. [source] Selective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liverHEPATOLOGY, Issue 2 2002Ping Zhao Chronic alcohol consumption may potentiate acetaminophen (APAP) hepatotoxicity through enhanced formation of N -acetyl- p -benzoquinone imine (NAPQI) via induction of cytochrome P450 2E1 (CYP2E1). However, CYP2E1 induction appears to be insufficient to explain the claimed magnitude of the interaction. We assessed the role of selective depletion of liver mitochondrial glutathione (GSH) by chronic ethanol. Rats were fed the Lieber-DeCarli diet for 10 days or 6 weeks. APAP toxicity in liver slices (% glutathione- S -transferase , released to the medium, GST release) and NAPQI toxicity in isolated liver mitochondria (succinate dehydrogenase inactivation, SDH) from these rats were compared with pair-fed controls. Ethanol induced CYP2E1 in both the 10-day and 6-week groups by ,2-fold. APAP toxicity in liver slices was higher in the 6-week ethanol group than the 10-day ethanol group. Partial inhibition of NAPQI formation by CYP2E1 inhibitor diethyldithiocarbamate to that of pair-fed controls abolished APAP toxicity in the 10-day ethanol group only. Ethanol selectively depleted liver mitochondrial GSH only in the 6-week group (by 52%) without altering cytosolic GSH. Significantly greater GSH loss and APAP covalent binding were observed in liver slice mitochondria of the 6-week ethanol group. Isolated mitochondria of the 6-week ethanol group were ,50% more susceptible to NAPQI (25-165 ,mol/L) induced SDH inactivation. This increased susceptibility was reproduced in pair-fed control mitochondria pretreated with diethylmaleate. In conclusion, 10-day ethanol feeding enhances APAP toxicity through CYP2E1 induction, whereas 6-week ethanol feeding potentiates APAP hepatotoxicity by inducing CYP2E1 and selectively depleting mitochondrial GSH. [source] Chronic ethanol increases adeno-associated viral transgene expression in rat liver via oxidant and NF,B-dependent mechanismsHEPATOLOGY, Issue 5 2000Michael D. Wheeler Recombinant adeno-associated virus (rAAV) transduction is limited in vivo, yet can be enhanced by hydroxyurea, ultraviolet-irradiation, or adenovirus coinfection, possibly via mechanisms involving stress in the host cell. Because chronic ethanol induces oxidative stress, it was hypothesized that chronic ethanol would increase rAAV transduction in vivo. To test this hypothesis, rAAV encoding ,-galactosidase was given to Wistar rats that later received either ethanol diet or high-fat control diet via an enteral-feeding protocol for 3 weeks. Expression and activity of ,-galactosidase in the liver were increased nearly 5-fold by ethanol. The increase in transgene expression was inhibited by antioxidant diphenylene iodonium (DPI), which is consistent with the hypothesis that ethanol causes an increase in rAAV transduction via oxidative stress. Ethanol increased DNA synthesis only slightly; however, it increased the nuclear transcription factor ,B (NF,B) 4-fold, a phenomenon also sensitive to DPI. Moreover, a 6-fold increase in rAAV transgene expression was observed in an acute ischemia-reperfusion model of oxidative stress. Transgene expression was transiently increased 24 hours after ischemia-reperfusion 3 days and 3 weeks after rAAV infection. Further, adenoviral expression of superoxide dismutase or I,B, superrepressor inhibited rAAV transgene expression caused by ischemia-reperfusion. Therefore, it is concluded that ethanol increases rAAV transgene expression via mechanisms dependent on oxidative stress, and NF,B likely through enhancement of cytomegaloviral (CMV) promoter elements. Alcoholic liver disease is an attractive target for gene therapy because consumption of ethanol could theoretically increase expression of therapeutic genes (e.g., superoxide dismutase). Moreover, this study has important implications for rAAV gene therapy and potential enhancement and regulation of transgene expression in liver. [source] Chronic ethanol intake inhibits in vitro osteogenesis induced by osteoblasts differentiated from stem cellsJOURNAL OF APPLIED TOXICOLOGY, Issue 2 2008Maria L. Rosa Abstract The study investigated whether chronic ethanol (ETH) intake and subsequent ETH exposure of cell cultures affects osteoblast differentiation by evaluating key parameters of in vitro osteogenesis. Rats were treated with 5,20% (0.85,3.43 mm) ETH, increasing by 5% per week for a period of 4 weeks (habituation), after which the 20% level was maintained for 15 days (chronic intake). Bone-marrow stem cells from control (CONT) or ETH-treated rats were cultured in osteogenic medium which was either supplemented (ETH) or not supplemented (CONT) with 1.3 mm ethanol. Thus, four groups relating to rat treatment/culture supplementation were evaluated: (1) CONT/CONT, (2) ETH/CONT, (3) CONT/ETH and (4) ETH/ETH. Cell morphology, proliferation and viability, total protein content, alkaline phosphatase (ALP) activity and bone-like nodule formation were evaluated. Chronic ethanol intake significantly reduced both food and liquid consumption and body weight gain. No difference was seen in cell morphology among treatments. Cell number was affected at 7 and 10 days as follows: CONT/CONT = CONT/ETH < ETH/CONT = ETH/ETH. Doubling time between 3 and 10 days was greater in groups of CONT animals: ETH/ETH = ETH/CONT < CONT/ETH = CONT/CONT. Cell viability and ALP activity were not affected by either animal treatment or culture exposure to ethanol. At day 21, the total protein content was affected as follows: ETH/ETH = CONT/ETH < ETH/CONT = CONT/CONT. Bone-like nodule formation was affected as follows: ETH/ETH < CONT/ETH < ETH/CONT < CONT/CONT. These results show that chronic ethanol intake, followed by the exposure of osteoblasts to ethanol, inhibited the differentiation of osteoblasts, as indicated by an increased proliferation rate and reduced bone-like nodule formation. Copyright © 2007 John Wiley & Sons, Ltd. [source] Chronic Ethanol Disrupts Circadian Photic Entrainment and Daily Locomotor Activity in the MouseALCOHOLISM, Issue 7 2010Allison J. Brager Background:, Chronic ethanol abuse is associated with disrupted circadian rhythms and sleep. Ethanol administration impairs circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on circadian timing. Here, we extend previous studies to explore the effects of chronic forced ethanol on photic phase-resetting, photic entrainment, and daily locomotor activity patterns in C57BL/6J mice. Methods:, First, microdialysis was used to characterize the circadian patterns of ethanol uptake in the suprachiasmatic (SCN) circadian clock and correlate this with systemic ethanol levels and episodic drinking of 10 or 15% ethanol. Second, the effects of chronic forced ethanol drinking and withdrawal on photic phase-delays of the circadian activity rhythm were assessed. Third, the effects of chronic ethanol drinking on entrainment to a weak photic zeitgeber (1 minute of 25 lux intensity light per day) were assessed. This method was used to minimize any masking actions of light that could mask ethanol effects on clock entrainment. Results:, Peak ethanol levels in the SCN and periphery occurred during the dark phase and coincided with the time when light normally induces phase-delays in mice. These delays were dose-dependently inhibited by chronic ethanol and its withdrawal. Chronic ethanol did not impede re-entrainment to a shifted light cycle but affected entrainment under the weak photic zeitgeber and disrupted the daily pattern of locomotor activity. Conclusions:, These results confirm that chronic ethanol consumption and withdrawal markedly impair circadian clock photic phase-resetting. Ethanol also disturbs the temporal structure of nighttime locomotor activity and photic entrainment. Collectively, these results suggest a direct action of ethanol on the SCN clock. [source] Sizing up Ethanol-Induced Plasticity: The Role of Small and Large Conductance Calcium-Activated Potassium ChannelsALCOHOLISM, Issue 7 2009Patrick J. Mulholland Small (SK) and large conductance (BK) Ca2+ -activated K+ channels contribute to action potential repolarization, shape dendritic Ca2+spikes and postsynaptic responses, modulate the release of hormones and neurotransmitters, and contribute to hippocampal-dependent synaptic plasticity. Over the last decade, SK and BK channels have emerged as important targets for the development of acute ethanol tolerance and for altering neuronal excitability following chronic ethanol consumption. In this mini-review, we discuss new evidence implicating SK and BK channels in ethanol tolerance and ethanol-associated homeostatic plasticity. Findings from recent reports demonstrate that chronic ethanol produces a reduction in the function of SK channels in VTA dopaminergic and CA1 pyramidal neurons. It is hypothesized that the reduction in SK channel function increases the propensity for burst firing in VTA neurons and increases the likelihood for aberrant hyperexcitability during ethanol withdrawal in hippocampus. There is also increasing evidence supporting the idea that ethanol sensitivity of native BK channel results from differences in BK subunit composition, the proteolipid microenvironment, and molecular determinants of the channel-forming subunit itself. Moreover, these molecular entities play a substantial role in controlling the temporal component of ethanol-associated neuroadaptations in BK channels. Taken together, these studies suggest that SK and BK channels contribute to ethanol tolerance and adaptive plasticity. [source] Acute and Chronic Ethanol Modulate Dopamine D2-Subtype Receptor Responses in Ventral Tegmental Area GABA NeuronsALCOHOLISM, Issue 5 2009Kimberly H. Ludlow Background:, Ventral tegmental area (VTA) ,-aminobutyric acid (GABA) neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in drug reward. VTA GABA neuron firing rate is reduced by acute ethanol and enhanced by DA via D2 receptor activation. The objective of this study was to evaluate the role of D2 receptors in acute ethanol inhibition of VTA GABA neuron activity, as well as the adaptation of D2 receptors by chronic ethanol consumption. Methods:, Using electrophysiological methods, we evaluated the effects of intraperitoneal ethanol on DA activation of VTA GABA neurons, the effects of DA antagonists on ethanol inhibition of their firing rate, as well as adaptations in firing rate following chronic ethanol consumption. Using single cell quantitative RT-polymerase chain reaction (PCR), we evaluated the expression of VTA GABA neuron D2 receptors in rats consuming ethanol versus pair-fed controls. Results:, In acute ethanol studies, microelectrophoretic activation of VTA GABA neurons by DA was inhibited by acute intraperitoneal ethanol, and intravenous administration of the D2 antagonist eticlopride blocked ethanol suppression of VTA GABA neuron firing rate. In chronic ethanol studies, while there were no signs of withdrawal at 24 hours, or significant adaptation in firing rate or response to acute ethanol, there was a significant down-regulation in the expression of D2 receptors in ethanol-consuming rats versus pair-fed controls. Conclusions:, Inhibition of DA activation of VTA GABA neuron firing rate by ethanol, as well as eticlopride block of ethanol inhibition of VTA GABA neuron firing rate, suggests an interaction between ethanol and DA neurotransmission via D2 receptors, perhaps via enhanced DA release in the VTA subsequent to ethanol inhibition of GABA neurons. Down-regulation of VTA GABA neuron D2 receptors by chronic ethanol might result from persistent DA release onto GABA neurons. [source] Differential Dietary Ethanol Intake and Blood Ethanol Levels in Adolescent and Adult Rats: Effects on Anxiety-Like Behavior and Seizure ThresholdsALCOHOLISM, Issue 8 2008Tiffany A. Wills Background:, Adult rats exhibit increased anxiety-like behavior after exposure to repeated cycles of chronic ethanol and withdrawal. While adolescent rats have differential responses to both acute and chronic ethanol treatments, the potential differences in the effects of repeated withdrawals in this population have yet to be determined. Methods:, Male adult and adolescent rats received three 5-day cycles of either a 4.5% or 7% ethanol diet (ED) separated by two 2-day withdrawal periods. Five hours into the final withdrawal, rats were tested for social interaction (SI) deficits (an index of anxiety-like behavior) and then assessed for seizure thresholds (audiogenic and bicuculline-induced). Ethanol intake was monitored throughout, and blood ethanol concentrations (BEC) were obtained from a separate group of rats. Results:, Adolescent rats have reduced SI during the final withdrawal from either ED and exhibit a greater reduction in SI compared to adult rats when exposed to a 7%ED. Audiogenic seizures were not increased during withdrawal from either ED in adult rats, but adolescent rats that received 7%ED displayed increased seizures. The bicuculline seizure thresholds were decreased in both ages exposed to a 7%ED, but only adolescent rats showed this decreased threshold after 4.5%ED. Ethanol intakes and BECs were higher in adolescent rats compared to similarly treated adults. However, ethanol intakes and BECs were comparable between 4.5%ED-treated adolescent and 7%ED-treated adult rats. Conclusions:, Behavioral results from the 7%ED-treated groups suggested that adolescent rats may be more vulnerable to repeated withdrawals from ethanol than adults; however, differences in ethanol intake and BECs may be at least in part responsible. When ethanol intakes and BECs were similar between 4.5%ED-treated adolescent and 7%ED-treated adult rats, behavioral effects were not different. Importantly, these data illustrated that adolescent rats can exhibit anxiety and reduced seizure thresholds following this repeated withdrawal paradigm. [source] Actions of Acute and Chronic Ethanol on Presynaptic TerminalsALCOHOLISM, Issue 2 2006Marisa Roberto This article presents the proceedings of a symposium entitled "The Tipsy Terminal: Presynaptic Effects of Ethanol" (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a "hot" topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol's behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication, alcohol abuse, and alcoholism. [source] Role of Parvalbumin in Estrogen Protection From Ethanol Withdrawal SyndromeALCOHOLISM, Issue 10 2005Mridula Rewal Abstract: Background: Parvalbumin (PA) is a calcium-binding protein that has been implicated in protecting neurons from hyperexcitability by sequestering intracellular calcium. This study examined whether ethanol exposure and/or ethanol withdrawal (EW) alter the levels of PA in a manner that is protected by 17,-estradiol (E2). Methods: Ovariectomized rats implanted with E2 (EW/E2) or oil pellets (EW/Oil) received chronic ethanol (7.5% w/v, 5 weeks) or control dextrin (Dex/Oil and Dex/E2) diets. At 0 hr, 24 hr, and 2 weeks of EW, three brain areas (the cerebellum, hippocampus, and cortex) were prepared for immunoblotting and immunohistological assessment of PA. Results: At 24 hr of EW, the EW/Oil group showed reduced levels of PA protein and PA-positive neurons in the cerebellum and hippocampus compared with the dextrin control and the EW/E2 groups. At 2 weeks of EW, the reduced levels of PA persisted in the cerebellum but recovered toward the control levels in the hippocampus. The cortex showed no change in PA levels in any of the treatment groups. When tested at 24 hr of EW, the magnitude of EW signs inversely correlated with the levels of PA in the cerebellum and hippocampus. Ethanol exposure itself did not affect PA levels. Conclusion: These data suggest that EW, rather than ethanol exposure, reduces PA levels in a manner that is brain region specific and that is protected by estrogen. Disturbed PA homeostasis is hypothesized to play a role in the hyperexcitability of EW signs. [source] |