| |||
Chronic Alcoholics (chronic + alcoholic)
Terms modified by Chronic Alcoholics Selected AbstractsUpregulation of ,-Catenin Levels in Superior Frontal Cortex of Chronic AlcoholicsALCOHOLISM, Issue 6 2008Ali M. Al-Housseini Background:, Chronic and excessive alcohol misuse results in neuroadaptive changes in the brain. The complex nature of behavioral, psychological, emotional, and neuropathological characteristics associated with alcoholism is likely a reflection of the network of proteins that are affected by alcohol-induced gene expression patterns in specific brain regions. At the molecular level, however, knowledge remains limited regarding alterations in protein expression levels affected by chronic alcohol abuse. Thus, novel techniques that allow a comprehensive assessment of this complexity will enable the simultaneous assessment of changes across a group of proteins in the relevant neural circuitry. Methods:, A proteomics analysis was performed using antibody microarrays to determine differential protein levels in superior frontal cortices between chronic alcoholics and age- and gender-matched control subjects. Seventeen proteins related to the catenin signaling pathway were analyzed, including ,-, ,-, and ,-catenins, their upstream activators cadherin-3 (type I cadherin) and cadherin-5 (type II cadherin), and 5 cytoplasmic regulators c-Src, CK1,, GSK-3,, PP2A-C,, and APC, as well as the nuclear complex partner of ,-catenin CBP and 2 downstream genes Myc and cyclin D1. ILK, G,1, G,1, and G,2, which are activity regulators of GSK-3,, were also analyzed. Results:, Both ,- and ,-catenin showed significantly increased levels, while ,-catenin did not change significantly, in chronic alcoholics. In addition, the level of the ,-catenin downstream gene product Myc was significantly increased. Average levels of the catenin regulators c-Src, CK1,, and APC were also increased in chronic alcoholics, but the changes were not statistically significant. Conclusion:, Chronic and excessive alcohol consumption leads to an upregulation of ,- and ,-catenin levels, which in turn increase downstream gene expressions such as Myc that is controlled by ,-catenin signaling. This study showed that the ,-catenin signal transduction pathway was upregulated by chronic alcohol abuse, and prompts further investigation of mechanisms underlying the upregulation of ,- and ,-catenins in alcoholism, which may have considerable pathogenic and therapeutic relevance. [source] Longitudinal Brain Metabolic Characterization of Chronic Alcoholics With Proton Magnetic Resonance SpectroscopyALCOHOLISM, Issue 9 2002Mitchell H. Parks Background Proton magnetic resonance spectroscopy may elucidate the molecular underpinnings of alcoholism-associated brain shrinkage and the progression of alcohol dependence. Methods Using proton magnetic resonance spectroscopy, we determined absolute concentrations of N -acetylaspartate (NAA), creatine/phosphocreatine (Cr), and choline (Cho)-containing compounds and myo -inositol (mI) in the anterior superior cerebellar vermis and frontal lobe white matter in 31 alcoholics and 12 normal controls. All patients were examined within 3 to 5 days of their last drink. Patients who did not relapse were again studied after 3 weeks and 3 months of abstinence by using an on-line repositioning technique that allows reliable localization of volumes of interest (VOIs). Results At 3 to 5 days after the last drink, frontal white matter metabolite concentrations were not significantly different from those of normal controls, whereas brain tissue in the VOI was reduced. Cerebellar [NAA] and [Cho] and brain and cerebellar volumes were decreased, but [Cr], [mI], and VOI brain tissue volume were not significantly different. Eight patients relapsed before 3 weeks (ER), 12 relapsed between 3 weeks and 3 months (LR), and 11 did not relapse (NR) during 3 months. Cerebellar [NAA] was reduced only in ER patients, despite the fact that ER patients drank for significantly fewer years and earlier in life than LR or NR patients. After 3 months, in the 11 continuously abstinent patients, cerebellar [NAA] and brain and cerebellar volumes increased; cerebellar [Cho], [Cr], and [mI] and VOI brain tissue did not change significantly. Conclusions Decreased [NAA] and [Cho] in cerebellar vermis indicate a unique sensitivity to alcohol-induced brain injury. Cerebellar [NAA] increased with abstinence, but reduced [Cho] persisted beyond 3 months. Further studies are needed to determine whether low cerebellar [NAA] is a risk factor for, or consequence of, malignant, early-onset alcoholism. [source] Temporal Discrimination Learning in Abstinent Chronic AlcoholicsALCOHOLISM, Issue 6 2002Regina McGlinchey-Berroth Background: Converging evidence from varied experimental paradigms has demonstrated that the cerebellum is involved in the timing of learned behavior. Given the documented neurological changes secondary to chronic alcoholism, particularly cerebellar degeneration, the ability of recovered chronic alcoholics to learn a temporal discrimination was assessed by using delayed eyeblink classical conditioning. Methods: Twelve abstinent alcoholic participants and 12 matched control participants were randomly presented 2 clearly discriminable tone conditioned stimuli that were individually paired with 2 different interstimulus intervals. Results: The data revealed a significant alteration in the abstinent alcoholics' peak latency measure at the long interstimulus intervals and an overall impairment in their level of acquisition of conditioned responses. No group differences in extinction were observed. Conclusions: It was speculated that cerebellar cortical atrophy caused by years of alcohol abuse resulted in the peak latency alteration and that atrophy extending into deep cerebellar nuclei caused the overall impairment in conditioned response acquisition. [source] Chronic Ethanol Consumption Decreases Murine Langerhans Cell Numbers and Delays Migration of Langerhans Cells as Well as Dermal Dendritic CellsALCOHOLISM, Issue 4 2008Kristin J. Ness Background:, Chronic alcoholics experience increased incidence and severity of infections, the mechanism of which is incompletely understood. Dendritic cells (DC) migrate from peripheral locations to lymph nodes (LN) to initiate adaptive immunity against infection. Little is known about how chronic alcohol exposure affects skin DC numbers or migration. Methods:, Mice received 20% EtOH in the drinking water for up to 35 weeks. Baseline Langerhans cell (LC) and dermal DC (dDC) numbers were enumerated by immunofluorescence (IF). LC repopulation after inflammation was determined following congenic bone marrow (BM) transplant and ultraviolet (UV) irradiation. Net LC loss from epidermis was determined by IF following TNF-, or CpG stimulation. LC and dDC migration into LN was assessed by flow cytometry following epicutaneous FITC administration. Results:, Chronic EtOH consumption caused a baseline reduction in LC but not dDC numbers. The deficit was not corrected following transplantation with non-EtOH-exposed BM and UV irradiation, supporting the hypothesis that the defect is intrinsic to the skin environment rather than LC precursors. Net loss of LC from epidermis following inflammation was greatly reduced in EtOH-fed mice versus controls. Ethanol consumption for at least 4 weeks led to delayed LC migration into LN, and consumption for at least 8 weeks led to delayed dDC migration into LN following epicutaneous FITC application. Conclusions:, Chronic EtOH consumption causes decreased density of epidermal LC, which likely results in decreased epidermal immunosurveillance. It also results in altered migratory responsiveness and delayed LC and dDC migration into LN, which likely delays activation of adaptive immunity. Decreased LC density at baseline appears to be the result of an alteration in the skin environment rather than an intrinsic LC defect. These findings provide novel mechanisms to at least partially explain why chronic alcoholics are more susceptible to infections, especially those following skin penetration. [source] Frontal White Matter and Cingulum Diffusion Tensor Imaging Deficits in AlcoholismALCOHOLISM, Issue 6 2008Gordon J. Harris Background:, Alcoholism-related deficits in cognition and emotion point toward frontal and limbic dysfunction, particularly in the right hemisphere. Prefrontal and anterior cingulate cortices are involved in cognitive and emotional functions and play critical roles in the oversight of the limbic reward system. In the present study, we examined the integrity of white matter tracts that are critical to frontal and limbic connectivity. Methods:, Diffusion tensor magnetic resonance imaging (DT-MRI) was used to assess functional anisotropy (FA), a measure of white matter integrity, in 15 abstinent long-term chronic alcoholic and 15 demographically equivalent control men. Voxel-based and region-based analyses of group FA differences were applied to these scans. Results:, Alcoholic subjects had diminished frontal lobe FA in the right superior longitudinal fascicles II and III, orbitofrontal cortex white matter, and cingulum bundle, but not in corresponding left hemisphere regions. These right frontal and cingulum white matter regional FA measures provided 97% correct group discrimination. Working Memory scores positively correlated with superior longitudinal fascicle III FA measures in control subjects only. Conclusions:, The findings demonstrate white matter microstructure deficits in abstinent alcoholic men in several right hemisphere tracts connecting prefrontal and limbic systems. These white matter deficits may contribute to underlying dysfunction in memory, emotion, and reward response in alcoholism. [source] Alcohol exposure and paracetamol-induced hepatotoxicityADDICTION BIOLOGY, Issue 2 2002STEPHEN M. RIORDAN In contrast, serious hepatotoxicity at recommended or near-recommended doses for therapeutic purposes has been reported, mainly from the United States and in association with chronic alcohol use, leading to the widely held belief that chronic alcoholics are predisposed to paracetamol-related toxicity at relatively low doses. Yet the effects of alcohol on paracetamol metabolism are complex. Studies performed in both experimental animals and humans indicate that chronic alcohol use leads to a short-term, two- to threefold increase in hepatic content of cytochrome P4502E1, the major isoform responsible for the generation of the toxic metabolite from paracetamol, although increased oxidative metabolism of paracetamol at recommended doses has not been demonstrated clinically. A reduced hepatic content of glutathione, required to detoxify the reactive metabolite, has been documented in chronic alcoholics, due probably to associated fasting and malnutrition, providing a metabolic basis for any possible predisposition of this group to hepatotoxicity at relatively low paracetamol doses. Simultaneous alcohol and paracetamol ingestion reduces oxidative metabolism of paracetamol in both rodents and humans, predominantly as a consequence of depletion in cytosol of free NADPH. The possibilities that chronic alcohol use may predispose to paracetamol-related hepatotoxicity and that alcohol taken with paracetamol may protect against it, based on these metabolic observations, are examined in this review. [source] Nucleolar organizer regions (NORs) evaluation of lingual salivary glands of chronic alcoholicsJOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 10 2002M. Severgnini Abstract Background: ,Chronic alcoholism has been associated with structural and physiological changes in salivary glands. Studies on a variety of pathologies have suggested that variation in number of nucleolar organizer regions (NORs) reveals conditions of cellular activity. The aim of this work was to examine, through the AgNOR technique, changes in number and size of NORs in lingual salivary glands of chronic alcoholics. Methods:, Samples of mucous and serous lingual salivary glands were obtained from tongues from autopsies of individuals whose cause of death was hepatic alcoholic cirrhosis. Lingual organs from individuals whose cause of death was accidental were used as controls. Number and size of the AgNORs and nuclear area, in ductal and acinar cells, were evaluated through a digital image analyzer. Results:, Statistical analysis revealed differences (P , 0.05) in number of AgNORs in mucous acini and ductal cells. Also, we observed changes in the area of the NORs. Conclusion:, These results suggest that in alcoholics the activity of glandular cells, mainly in ductal epithelium, could be affected, modifying synthesis, transport and salivary secretions. [source] Altered Motor Cortex Excitability to Magnetic Stimulation in Alcohol Withdrawal SyndromeALCOHOLISM, Issue 4 2010Raffaele Nardone Background:, Alcohol addiction is a complex brain disease caused by alterations in crucial neurotransmitter systems, including gamma-aminobutyric acid (GABA) and glutamate. These disturbances could be revealed by changes in cortical excitability parameters, as assessed by transcranial magnetic stimulation (TMS). This study was aimed to further investigate the complex pathophysiology of alcohol withdrawal syndrome (AWS). Methods:, Motor cortex excitability was examined in 13 subjects with AWS in a mild predelirial state, in 12 chronic alcoholics and in 15 age-matched control subjects, using a range of TMS protocols. Central motor conduction time, resting and active motor threshold, duration of the cortical silent period, short latency intracortical inhibition (SICI), and intracortical facilitation (ICF) to paired TMS were examined. Results:, Intracortical facilitation was significantly increased in the AWS patients when compared with the chronic alcoholics and the control subjects. The other TMS parameters did not differ significantly from the controls. Administration of a single oral dose of the glutamatergic antagonist riluzole in a subgroup of 8 patients significantly reduced ICF; motor threshold and SICI were not affected by riluzole. Conclusion:, Transcranial magnetic stimulation shows a selective increase in intracortical facilitation after ethanol withdrawal. Our findings support the theory that altered glutamatergic receptor function plays an important role in the pathogenesis of human alcohol withdrawal. This study provides further physiological evidence that antiglutamatergic approaches represent an efficacious alternative for treating alcohol withdrawal symptoms. [source] Global,Local Interference is Related to Callosal Compromise in Alcoholism: A Behavior-DTI Association StudyALCOHOLISM, Issue 3 2009Eva M. Müller-Oehring Background:, Visuospatial ability is a multifactorial process commonly impaired in chronic alcoholism. Identification of which features of visuospatial processing are affected and which are spared in alcoholism, however, has not been clearly determined. We used a global,local paradigm to assess component processes of visuospatial ability and MR diffusion tensor imaging (DTI) to examine whether alcoholism-related microstructural degradation of the corpus callosum contributes to disruption of selective lateralized visuospatial and attention processes. Methods:, A hierarchical letter paradigm was devised, where large global letters were composed of small local letters. The task required identification of target letters among distractors presented at global, local, both, or neither level. Attention was either selectively directed to global or local levels or divided between levels. Participants were 18 detoxified chronic alcoholics and 22 age-matched healthy controls. DTI provided quantitative assessment of the integrity of corpus callosal white matter microstructure. Results:, Alcoholics generally had longer reaction times than controls but obtained similar accuracy scores. Both groups processed local targets faster than global targets and showed interference from targets at the unattended level. Alcoholics exhibited moderate compromise in selectively attending to the global level when the global stimuli were composed of local targets. Such local interference was less with longer abstinence. Callosal microstructural integrity compromise predicted degree of interference from stimulus incongruency in the alcoholic group. This relationship was not observed for lateral or third ventricular volumes, which are measures of nonspecific cortical volume deficits. Conclusion:, Global,local feature perception was generally spared in abstinent chronic alcoholics, but impairments were observed when directing attention to global features and when global and local information interfered at stimulus or response levels. Furthermore, the interference-callosal integrity relationship in alcoholics indicates that compromised visuospatial functions include those requiring bilateral integration of information. [source] Alterations in Brain Serotonin Synthesis in Male Alcoholics Measured Using Positron Emission TomographyALCOHOLISM, Issue 2 2009Masami Nishikawa Background:, A consistent association between low endogenous 5HT function and high alcohol preference has been observed, and a number of serotonergic manipulations (uptake blockers, agonists) alter alcohol consumption in animals and humans. Studies have also shown an inverse relationship between alcohol use and cerebrospinal fluid levels of serotonin metabolites, suggesting that chronic alcohol consumption produces alterations in serotonin synthesis or release. Methods:, The objective of the study was to characterize regional brain serotonin synthesis in nondepressed chronic alcoholics at treatment entry in comparison to normal nonalcoholic controls using PET and the tracer ,-[11C]-methyl- l -tryptophan. Results:, Comparisons of the alcoholics and controls by SPM found that there were significant differences in the rate of serotonin synthesis between groups. Serotonin synthesis was significantly lower among alcoholics in Brodmann Area (BA) 9, 10, and 32. However, serotonin synthesis among the alcoholics group was significantly higher than controls at BA19 in the occipital lobe and around the transverse temporal convolution in the left superior temporal gyrus (BA41). In addition, there were correlations between regional serotonin synthesis and a quantity-frequency measure of alcohol consumption. Regions showing a significant negative correlation with QF included the bilateral rectus gyri (BA11) in the orbitofrontal area, the bilateral medial frontal area (BA6), and the right amygdala. Conclusions:, Current alcoholism is associated with serotonergic abnormalities in brain regions that are known to be involved in planning, judgment, self-control, and emotional regulation. [source] Upregulation of ,-Catenin Levels in Superior Frontal Cortex of Chronic AlcoholicsALCOHOLISM, Issue 6 2008Ali M. Al-Housseini Background:, Chronic and excessive alcohol misuse results in neuroadaptive changes in the brain. The complex nature of behavioral, psychological, emotional, and neuropathological characteristics associated with alcoholism is likely a reflection of the network of proteins that are affected by alcohol-induced gene expression patterns in specific brain regions. At the molecular level, however, knowledge remains limited regarding alterations in protein expression levels affected by chronic alcohol abuse. Thus, novel techniques that allow a comprehensive assessment of this complexity will enable the simultaneous assessment of changes across a group of proteins in the relevant neural circuitry. Methods:, A proteomics analysis was performed using antibody microarrays to determine differential protein levels in superior frontal cortices between chronic alcoholics and age- and gender-matched control subjects. Seventeen proteins related to the catenin signaling pathway were analyzed, including ,-, ,-, and ,-catenins, their upstream activators cadherin-3 (type I cadherin) and cadherin-5 (type II cadherin), and 5 cytoplasmic regulators c-Src, CK1,, GSK-3,, PP2A-C,, and APC, as well as the nuclear complex partner of ,-catenin CBP and 2 downstream genes Myc and cyclin D1. ILK, G,1, G,1, and G,2, which are activity regulators of GSK-3,, were also analyzed. Results:, Both ,- and ,-catenin showed significantly increased levels, while ,-catenin did not change significantly, in chronic alcoholics. In addition, the level of the ,-catenin downstream gene product Myc was significantly increased. Average levels of the catenin regulators c-Src, CK1,, and APC were also increased in chronic alcoholics, but the changes were not statistically significant. Conclusion:, Chronic and excessive alcohol consumption leads to an upregulation of ,- and ,-catenin levels, which in turn increase downstream gene expressions such as Myc that is controlled by ,-catenin signaling. This study showed that the ,-catenin signal transduction pathway was upregulated by chronic alcohol abuse, and prompts further investigation of mechanisms underlying the upregulation of ,- and ,-catenins in alcoholism, which may have considerable pathogenic and therapeutic relevance. [source] Chronic Ethanol Consumption Decreases Murine Langerhans Cell Numbers and Delays Migration of Langerhans Cells as Well as Dermal Dendritic CellsALCOHOLISM, Issue 4 2008Kristin J. Ness Background:, Chronic alcoholics experience increased incidence and severity of infections, the mechanism of which is incompletely understood. Dendritic cells (DC) migrate from peripheral locations to lymph nodes (LN) to initiate adaptive immunity against infection. Little is known about how chronic alcohol exposure affects skin DC numbers or migration. Methods:, Mice received 20% EtOH in the drinking water for up to 35 weeks. Baseline Langerhans cell (LC) and dermal DC (dDC) numbers were enumerated by immunofluorescence (IF). LC repopulation after inflammation was determined following congenic bone marrow (BM) transplant and ultraviolet (UV) irradiation. Net LC loss from epidermis was determined by IF following TNF-, or CpG stimulation. LC and dDC migration into LN was assessed by flow cytometry following epicutaneous FITC administration. Results:, Chronic EtOH consumption caused a baseline reduction in LC but not dDC numbers. The deficit was not corrected following transplantation with non-EtOH-exposed BM and UV irradiation, supporting the hypothesis that the defect is intrinsic to the skin environment rather than LC precursors. Net loss of LC from epidermis following inflammation was greatly reduced in EtOH-fed mice versus controls. Ethanol consumption for at least 4 weeks led to delayed LC migration into LN, and consumption for at least 8 weeks led to delayed dDC migration into LN following epicutaneous FITC application. Conclusions:, Chronic EtOH consumption causes decreased density of epidermal LC, which likely results in decreased epidermal immunosurveillance. It also results in altered migratory responsiveness and delayed LC and dDC migration into LN, which likely delays activation of adaptive immunity. Decreased LC density at baseline appears to be the result of an alteration in the skin environment rather than an intrinsic LC defect. These findings provide novel mechanisms to at least partially explain why chronic alcoholics are more susceptible to infections, especially those following skin penetration. [source] Mismatch Negativity: No Difference Between Controls and Abstinent AlcoholicsALCOHOLISM, Issue 1 2004George Fein Abstract: Background: A number of studies have examined the amplitude of the mismatch negativity (MMN) evoked potential as a measure of a brain inhibitory deficit in alcoholics or those at risk for alcoholism. The current study examined MMN in alcoholics abstinent an average of 6.7 years (with a minimum of six months abstinence) compared to controls. This study examined the association of MMN with alcoholism family history density, with indices of the presence and severity of externalizing disorders (a risk-factor for alcoholism), and with alcohol use variables. Methods: Electroencephalograms were gathered on 76 subjects (38 controls, 38 abstinent alcoholics) during a nonattending mismatch negativity experiment. Measures of alcoholism family history density, disinhibited personality traits, and antisocial symptoms served as measures of risk-factors known to be associated with a genetic liability to alcoholism. Alcohol use variables were used as measures of alcoholism severity. Results: There were no differences in MMN amplitude or latency between controls and abstinent alcoholics. There also were no significant associations between MMN measures and the measures of risk for alcoholism or with the severity of alcohol use or duration of abstinence. Conclusions: The results suggest that MMN is neither affected in chronic alcoholics nor associated with alcoholism vulnerability, and thus does not reflect a trait marker of alcoholism or alcoholism risk. The current results do not address effects on MMN of acute alcohol ingestion or withdrawal from alcohol. [source] Effects of Chronic Alcohol Abuse on Alveolar Epithelial Barrier Function and Glutathione HomeostasisALCOHOLISM, Issue 7 2003Ellen L. Burnham Background: An association between the development and severity of the acute respiratory distress syndrome has been described in individuals who abuse alcohol chronically, possibly through a mechanism involving the deficiency of pulmonary glutathione. In a rodent model of chronic alcohol abuse, this antioxidant contributes to the maintenance of alveolar-capillary membrane integrity. We postulated that humans who chronically abuse alcohol will have similar alterations in alveolar-capillary barrier function. Methods: Bronchoalveolar lavage was performed in 18 healthy chronic alcoholics and 18 control subjects; total protein and glutathione concentrations were measured within the epithelial lining fluid. To examine possible protracted effects of alcohol abuse, a subset of 11 chronic alcoholic subjects underwent a second bronchoalveolar lavage after a week of abstinence. Results: Chronic alcoholic subjects had significantly elevated protein concentrations compared with controls (8.64 ,g protein/ng immunoglobulin A vs. 5.91 ,g protein/ng immunoglobulin A, p= 0.01). After a week of abstinence, no significant increase in either the glutathione levels or normalization of the protein concentrations in the epithelial lining fluid was demonstrable. Conclusions: Increased protein levels in the epithelial lining fluid of individuals who abuse alcohol chronically may signify abnormal alveolar epithelial barrier function that does not appear to readily reverse after a period of abstinence. [source] Temporal Discrimination Learning in Abstinent Chronic AlcoholicsALCOHOLISM, Issue 6 2002Regina McGlinchey-Berroth Background: Converging evidence from varied experimental paradigms has demonstrated that the cerebellum is involved in the timing of learned behavior. Given the documented neurological changes secondary to chronic alcoholism, particularly cerebellar degeneration, the ability of recovered chronic alcoholics to learn a temporal discrimination was assessed by using delayed eyeblink classical conditioning. Methods: Twelve abstinent alcoholic participants and 12 matched control participants were randomly presented 2 clearly discriminable tone conditioned stimuli that were individually paired with 2 different interstimulus intervals. Results: The data revealed a significant alteration in the abstinent alcoholics' peak latency measure at the long interstimulus intervals and an overall impairment in their level of acquisition of conditioned responses. No group differences in extinction were observed. Conclusions: It was speculated that cerebellar cortical atrophy caused by years of alcohol abuse resulted in the peak latency alteration and that atrophy extending into deep cerebellar nuclei caused the overall impairment in conditioned response acquisition. [source] |