Chronic Activation (chronic + activation)

Distribution by Scientific Domains


Selected Abstracts


Pharmacological targeting of CDK9 in cardiac hypertrophy

MEDICINAL RESEARCH REVIEWS, Issue 4 2010
Vladimír Kry
Abstract Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C -terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy. © 2009 Wiley Periodicals, Inc. Med Res Rev 30, No. 4, 646,666, 2010 [source]


CD56-expressing T cells that have features of senescence are expanded in rheumatoid arthritis

ARTHRITIS & RHEUMATISM, Issue 1 2007
Joshua J. Michel
Objective T cells deficient in CD28 expression have been implicated in the pathogenesis of rheumatoid arthritis (RA). Given that CD28-null T cells are functionally heterogeneous, we undertook this study to screen for novel receptors on these cells. Methods Seventy-two patients with RA (ages 35,84 years) and 53 healthy persons (32 young controls ages 19,34 years, 21 older controls ages 39,86 years) were recruited. Phenotypes and proliferative capacity of T cells from fresh leukocytes and of long-term cultures were monitored by flow cytometry. Lung biopsy specimens from patients with RA-associated interstitial pneumonitis (IP) were examined by immunohistochemistry. Receptor functionality was assessed by crosslinking bioassays. Results Chronic stimulation of CD28+ T cells in vitro yielded progenies that lacked CD28 but that gained CD56. Ex vivo analysis of leukocytes from patients with extraarticular RA showed a higher frequency of CD56+,CD28-null T cells than in patients with disease confined to the joints or in healthy controls. CD56+,CD28-null T cells had nil capacity for proliferation, consistent with cellular senescence. CD56+ T cells had skewed T cell receptor (TCR) ,/,-chain usage and restricted TCR third complementarity-determining region spectra. Histologic studies showed that CD56+ T cells were components of cellular infiltrates in RA-associated IP. CD56 crosslinking on T cells sufficiently induced cytokine production, although CD56/TCR coligation induced higher production levels. Conclusion Chronic activation of T cells induces counterregulation of CD28 and CD56 expression. The loss of CD28 is accompanied by the gain of CD56 that confers TCR-independent and TCR-dependent activation pathways. We propose that accumulation of CD56+ T cells in RA contributes to maladaptive immune responses and that CD56+ T cells are potential targets for therapy. [source]


Severe functional impairment and elevated PD-1 expression in CD1d-restricted NKT cells retained during chronic HIV-1 infection

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2009
Markus Moll
Abstract Invariant CD1d-restricted NKT cells play important roles in regulating both innate and adaptive immunity. They are targeted by HIV-1 infection and severely reduced in number or even lost in many infected subjects. Here, we have investigated the characteristics of NKT cells retained by some patients despite chronic HIV-1 infection. NKT cells preserved under these circumstances displayed an impaired ability to proliferate and produce IFN-, in response to CD1d-restricted lipid antigen as compared with cells from uninfected control subjects. HIV-1 infection was associated with an elevated expression of the inhibitory programmed death-1 (PD-1) receptor (CD279) on the CD4, subset of NKT cells. However, blocking experiments indicated that the functional defects in NKT cells were largely PD-1-independent. Furthermore, the elevated PD-1 expression and the functional defects were not restored by anti-retroviral treatment, and the NKT cell numbers in blood did not recover significantly in response to treatment. The functional phenotype of NKT cells in these patients suggests an irreversible immune exhaustion due to chronic activation in vivo. The data demonstrate a severe functional impairment in the remaining NKT-cell compartment in HIV-1-infected patients, which limits the prospects to mobilize these cells in immunotherapy approaches in patients. [source]


Role of functional polymorphisms of NRAMP1 gene for the development of Crohn's disease

INFLAMMATORY BOWEL DISEASES, Issue 10 2008
Maria Gazouli PhD
Abstract Background: Crohn's disease (CD) is characterized by chronic activation of macrophages. Natural resistance-associated macrophage protein 1 (NRAMP1) gene exerts many pleiotropic effects on macrophage functions. Hence, NRAMP1 may be also involved in the resistance to intracellular pathogens, and this effector of the innate immunity might be involved in CD pathogenesis. Polymorphic alleles at the NRAMP1 locus have been previously associated with susceptibility both to the putative infectious agents and to autoimmune disorders. Based on these indications, in the present study we investigate its candidacy as a genetic determinant for CD in a Greek population in an association-based study, comparing frequencies of 274 CD patients to these of 200 healthy control subjects. Methods: The 5,(GT)n promoter polymorphism and 9 either single nucleotide (SNPs) or insertion/deletion type polymorphisms were genotyped across the NRAMP1 gene. Reverse-transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry were performed in order to investigate the NRAMP1 mRNA levels in RNA isolated from biopsies of CD patients as well as protein expression in tissues. Results: Three NRAMP1 polymorphisms [5,(GT)n, D543N, and INT4G/C] were significantly associated with CD. Consistent with previous autoimmune disease studies, allele 3 at the functional 5,(GT)n promoter region repeat polymorphism, was significantly associated with CD when compared to healthy controls (odds ratio 1.50; 95% confidence interval [CI]: 1.16,1.95; P = 0.002). Interestingly, we observed that CD patients homozygous for allele 3 expressed higher NRAMP1 mRNA levels compared to carriers of allele 2. Furthermore, the protein levels of allele 3 carriers in tissues were also elevated compared to those of allele 2 carriers. Based on these data we can speculate that overrepresentation of allele 3 in CD patients could lead to hyperactivation of bowel-wall macrophages that are chronically exposed to lipopolysaccharide and this could subsequently cause the autoimmune-like phenotype characteristic of CD. Conclusions: Collectively, our data indicate that genetic polymorphisms of NRAMP1 might be associated with susceptibility to CD. (Inflamm Bowel Dis 2008) [source]


Muscle Strength After Resistance Training Is Inversely Correlated with Baseline Levels of Soluble Tumor Necrosis Factor Receptors in the Oldest Old

JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 2 2004
Helle Bruunsgaard MD
Objectives:, To test the hypothesis that physical exercise induces an antiinflammatory response that is associated with reduced chronic activation of the tumor necrosis factor (TNF)-alpha system in frail elders and that the increase in muscle strength after resistance training is limited by systemic low-grade inflammation. Design:, A 12-week controlled resistance-training study. Setting:, Nursing homes in Copenhagen, Denmark. Participants:, Twenty-one frail nursing home residents aged 86 to 95 completed the study. Intervention:, Ten participants were randomized to a program of resistance training of knee extensors and flexors three times a week for 12 weeks; the remaining 11 participants served as a control group who joined social activities supervised by an occupation therapist. Measurements:, Muscle strength, plasma levels of TNF-,, soluble TNF receptor (sTNFR)-1, and interleukin (IL)-6 were measured before and at the end of the intervention period. Results:, The training program improved muscle strength but did not affect plasma levels of TNF-, and sTNFR-I or IL-6. However, plasma levels of sTNFR-I at baseline were inversely correlated with the increase in muscle strength. Conclusion:, Low-grade activation of the TNF system could limit the increase in muscle strength after resistance training in the oldest old. Furthermore, data suggest that theantiinflammatory response induced by 12 weeks of resistance training is not sufficient to reduce chronic activation of the TNF system, but the small sample size limited this interpretation. [source]


Priming Crime and Activating Blackness: Understanding the Psychological Impact of the Overrepresentation of Blacks as Lawbreakers on Television News

JOURNAL OF COMMUNICATION, Issue 2 2007
Travis L. Dixon
Two experiments examined the extent to which U.S. viewers' perceptions that Blacks face structural limitations to success, support for the death penalty, and culpability judgments could be influenced by exposure to racialized crime news. Participants were exposed to a majority of Black suspects, a majority of White suspects, unidentified suspects, and noncrime news stories. In addition, participants' prior news viewing was assessed. In Study 1, heavy news viewers exposed to unidentified perpetrators were less likely than heavy news viewers exposed to noncrime stories to perceive that Blacks face structural limitations to success. In addition, heavy news viewers exposed to unidentified perpetrators were more likely than heavy news viewers exposed to noncrime stories to support the death penalty. In Study 2, participants exposed to a majority of Black suspects were more likely than participants exposed to noncrime stories to find a subsequent race-unidentified criminal culpable for his offense. In addition, heavy news viewers were more likely to exhibit the above effect than light news viewers. The methodological and theoretical implications of these findings are discussed in light of chronic activation and the priming paradigm. [source]


Partial restoration of T-cell function in aged mice by in vitro blockade of the PD-1/,PD-L1 pathway

AGING CELL, Issue 5 2010
Celine S. Lages
Summary Programmed cell death-1 (PD-1) is a newly characterized negative regulator of immune responses. The interaction of PD-1 with its ligands (PD-L1 and PD-L2) inhibits T-cell proliferation and cytokine production in young mice. Increased PD-1 expression has been described during chronic infections, inducing chronic activation of the immune system to control it. As aging is associated with chronic immune activation, PD-1 may contribute to age-associated T-cell dysfunction. Our data showed the following results in aged mice: (i) the number of PD-1-expressing T cells and the level of expression of PD-Ls was increased on dendritic cell subsets and T cells; (ii) PD-1+ T cells were exhausted effector memory T cells, as shown by their lower level of CD127, CD25 and CD28, as well as their limited proliferative and cytokine-producing capacity; (iii) the expression of PD-1 was up-regulated after T-cell receptor-mediated activation of CD8+ T cells, but not of CD4+ T cells; (iv) blockade of the PD-1/PD-L1 pathway moderately improved the cytokine production of T cells from old mice but did not restore their proliferation; and (v) blockade of the PD-1/PD-L1 pathway did not restore function of PD-1+ T cells; its effect appeared to be exclusively mediated by increased functionality of the PD-1, T cells. Our data thus suggest that blockade of the PD-1/PD-L1 is not likely to be efficient at restoring exhausted T-cell responses in aged hosts, although improving the responses of PD-1, T cells may prove to be a helpful strategy in enhancing primary responses. [source]


Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NF,B signaling

AGING CELL, Issue 6 2006
Sergiy Libert
Summary The innate immune response protects numerous organisms, including humans, from the universe of pathogenic molecules, viruses and micro-organisms. Despite its role in promoting pathogen resistance, inappropriate activation and expression of NF,B and other immunity-related effector molecules can lead to cancer, inflammation, and other diseases of aging. Understanding the mechanisms leading to immune system activation as well as the short- and long-term consequences of such activation on health and lifespan is therefore critical for the development of beneficial immuno-modulating and longevity-promoting interventions. Mechanisms of innate immunity are highly conserved across species, and we take advantage of genetic tools in the model organism, Drosophila melanogaster, to study the effects of acute and chronic activation of immunity pathways on pathogen resistance and general fitness of adult flies. Our findings indicate that fat body specific overexpression of a putative pathogen recognition molecule, peptidoglycan recognition protein (PGRP-LE), is sufficient for constitutive up-regulation of the immune response and for enhanced pathogen resistance. Primary components of fitness are unaffected by acute activation, but chronic activation leads to an inflammatory state and reduced lifespan. These phenotypes are dependent on the NF,B-related transcriptional factor, Relish, and they establish a mechanistic basis for a link between immunity, inflammation, and longevity. [source]


Glial Limitans Elasticity Subjacent to the Supraoptic Nucleus

JOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2004
A. K. Salm
Abstract Two previous studies from our laboratory have indicated that the ventral glial limitans subjacent to the hypothalamic supraoptic nucleus (SON-VGL) undergoes a reversible thinning upon chronic activation of the magnocellular neuroendocrine cells (MNCs) of the supraoptic nucleus (SON). Numerous other studies have shown that MNC somata hypertrophy with activation. One aim of the current study was to understand better how SON-VGL thinning occurs. A second aim was to quantify overall changes of the MNC somata region due to cellular hypertrophy to compare relative changes in dimensions. Here, we undertook a light microscopic stereological investigation of the SON and the subjacent SON-VGL of Nissl stained material under basal and activated conditions. Astrocyte numbers in the underlying SON-VGL remained stable across hydration state as did the overall volume of the SON-VGL and dendritic zone reference area. How these data are consistent with our earlier observations of SON-VGL thinning was resolved by the finding of a highly significant, 30% increase in the mediolateral dimension of the SON-VGL in dehydrated rats. These observations fit well with previous work from our laboratory that demonstrates a reorientation of SON-VGL astrocytes, from vertical to horizontal, which occurs in the activated SON-VGL. We found a significant, approximately 54%, increase in the overall volume of the MNC region of the SON. No significant rostrocaudal lengthening of the SON was detected, although a trend was evident. All the observed changes reversed with rehydration. These data indicate that elasticity of the SON-VGL acts to accommodate the volume expansion of the MNCs and enables the SON-VGL to continue as an interface between the underlying cerebrospinal fluid in the subarachnoid space and the expanded SON above. [source]


Novel role of TGF-, in differential astrocyte-TIMP-1 regulation: Implications for HIV-1-dementia and neuroinflammation

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2006
Alok Dhar
Abstract Astrocyte production of tissue inhibitor of metalloproteinase (TIMP)-1 is important in central nervous system (CNS) homeostasis and inflammatory diseases such as HIV-1-associated dementia (HAD). TIMPs and matrix metalloproteinases (MMPs) regulate the remodeling of the extracellular matrix. An imbalance between TIMPs and MMPs is associated with many pathologic conditions. Our recently published studies uniquely demonstrate that HAD patients have reduced levels of TIMP-1 in the brain. Astrocyte-TIMP-1 expression is differentially regulated in acute and chronic inflammatory conditions. In this and the adjoining report (Gardner et al., 2006), we investigate the mechanisms that may be involved in differential TIMP-1 regulation. One mechanism for TIMP-1 downregulation is the production of anti-inflammatory molecules, which can activate signaling pathways during chronic inflammation. We investigated the contribution of transforming growth factor (TGF)-signaling in astrocyte-MMP/TIMP-1-astrocyte regulation. TGF-,1 and ,2 levels were upregulated in HAD brain tissues. Co-stimulation of astrocytes with IL-1, and TGF-, mimicked the TIMP-1 downregulation observed with IL-1, chronic activation. Measurement of astrocyte-MMP protein levels showed that TGF-, combined with IL-1, increased MMP-2 and decreased proMMP-1 expression compared to IL-1, alone. We propose that one of the mechanisms involved in TIMP-1 downregulation may be through TGF-signaling in chronic immune activation. These studies show a novel extracellular regulatory loop in astrocyte-TIMP-1 regulation. © 2006 Wiley-Liss, Inc. [source]


Potential mechanisms for astrocyte-TIMP-1 downregulation in chronic inflammatory diseases

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2006
Jessica Gardner
Abstract The pathogenesis of many neurodegenerative disorders, including human immunodeficiency virus (HIV)-1 associated dementia, is exacerbated by an imbalance between matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). In the context of disease, TIMP-1 has emerged as an important multifunctional protein capable of regulating inflammation. We previously reported differential TIMP-1 expression in acute versus chronic activation of astrocytes. This study investigates possible mechanisms underlying TIMP-1 downregulation in chronic neuroinflammation. We used interleukin (IL)-1, as a model pro-inflammatory stimulus and measured TIMP-1 binding to extracellular matrix, cell death, receptor downregulation, TIMP-1 mRNA stability and transcriptional regulation in activated astrocytes. TIMP-1 remained localized to the cell body or was secreted into the cell supernatant. DNA fragmentation ELISA and MTT assay showed that prolonged IL-1, activation of astrocytes induced significant astrocyte death. In acute and chronic IL-1,-activated astrocytes, IL-1 receptor levels were not significantly different. TIMP-1 mRNA stability was measured in astrocytes and U87 astroglioma cells by real-time PCR, and TIMP-1 promoter activation was studied using TIMP-1-luciferase reporter constructs in transfected astrocytes. Our results indicated that TIMP-1 expression is regulated through multiple mechanisms. Transcriptional control and loss of mRNA stabilization are, however, the most likely primary contributors to chronic downregulation of TIMP-1. These data are important for unraveling the mechanisms underlying astrocyte responses during chronic neuroinflammation and have broader implications in other inflammatory diseases that involve MMP/TIMP imbalance. © 2006 Wiley-Liss, Inc. [source]


The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium

MOLECULAR MICROBIOLOGY, Issue 1 2007
Alexandra Sittka
Summary The RNA chaperone, Hfq, plays a diverse role in bacterial physiology beyond its original role as a host factor required for replication of Q, RNA bacteriophage. In this study, we show that Hfq is involved in the expression and secretion of virulence factors in the facultative intracellular pathogen, Salmonella typhimurium. A Salmonella hfq deletion strain is highly attenuated in mice after both oral and intraperitoneal infection, and shows a severe defect in invasion of epithelial cells and a growth defect in both epithelial cells and macrophages in vitro. Surprisingly, we find that these phenotypes are largely independent of the previously reported requirement of Hfq for expression of the stationary phase sigma factor, RpoS. Our results implicate Hfq as a key regulator of multiple aspects of virulence including regulation of motility and outer membrane protein (OmpD) expression in addition to invasion and intracellular growth. These pleiotropic effects are suggested to involve a network of regulatory small non-coding RNAs, placing Hfq at the centre of post-transcriptional regulation of virulence gene expression in Salmonella. In addition, the hfq mutation appears to cause a chronic activation of the RpoE-mediated envelope stress response which is likely due to a misregulation of membrane protein expression. [source]


The role of intramuscular lipid in insulin resistance

ACTA PHYSIOLOGICA, Issue 4 2003
B. D. Hegarty
Abstract There is interest in how altered lipid metabolism could contribute to muscle insulin resistance. Many animal and human states of insulin resistance have increased muscle triglyceride content, and there are now plausible mechanistic links between muscle lipid accumulation and insulin resistance, which go beyond the classic glucose,fatty acid cycle. We postulate that muscle cytosolic accumulation of the metabolically active long-chain fatty acyl CoAs (LCACoA) is involved, leading to insulin resistance and impaired insulin signalling or impaired enzyme activity (e.g. glycogen synthase or hexokinase) either directly or via chronic translocation/activation of mediators such as a protein kinase C (particularly PKC , and ,). Ceramides and diacylglycerols (DAGs) have also been implicated in forms of lipid-induced muscle insulin resistance. Dietary lipid-induced muscle insulin resistance in rodents is relatively easily reversed by manipulations that lessen cytosolic lipid accumulation (e.g. diet change, exercise or fasting). PPAR agonists (both , and ,) also lower muscle LCACoA and enhance insulin sensitivity. Activation of AMP-activated protein kinase (AMPK) by AICAR leads to muscle enhancement (especially glycolytic muscle) of insulin sensitivity, but involvement of altered lipid metabolism is less clear cut. In rodents there are similarities in the pattern of muscle lipid accumulation/PKC translocation/altered insulin signalling/insulin resistance inducible by 3,5-h acute free fatty acid elevation, 1,4 days intravenous glucose infusion or several weeks of high-fat feeding. Recent studies extend findings and show relevance to humans. Muscle cytosolic lipids may accumulate either by increased fatty acid flux into muscle, or by reduced fatty acid oxidation. In some circumstances muscle insulin resistance may be an adaptation to optimize use of fatty acids when they are the predominant available energy fuel. The interactions described here are fundamental to optimizing therapy of insulin resistance based on alterations in muscle lipid metabolism. [source]