Chromosome Segment (chromosome + segment)

Distribution by Scientific Domains


Selected Abstracts


Genomic imbalances in CML blast crisis: 8q24.12,q24.13 Segment identified as a common region of over-representation

GENES, CHROMOSOMES AND CANCER, Issue 4 2003
Susan M. Gribble
The acute phase of chronic myeloid leukemia (CML) is accompanied by secondary chromosomal changes. The additional changes have a non-random pattern; however, highly abnormal (marker) chromosomes are reported in some 20% of abnormal karyotypes. These marker chromosomes have proved to be beyond the resolution of conventional G-banding analysis. We used molecular cytogenetic techniques to determine the structure of complex chromosome markers in 10 CML-derived cell lines after our investigations of CML patients in blast crisis. Multicolor fluorescence in situ hybridization identified a multitude of structural chromosome aberrations. In addition, genomic gains identified by comparative genomic hybridization (CGH) were mapped to highly complex marker chromosomes in more than one cell line. The most common genomic loss detected by CGH affected chromosome 9, whereas the most common genomic gains affected, in order of frequency, the sequences of 8q, 6, and 13q. The smallest discrete amplification on 8q was identified in cell line MEG-01. This amplicon contains sequences represented by the marker D8S263/RMC08P029 but did not contain the proximal MYC gene or a more distal marker, D8S256/RMC08P025. We determined the size of the amplicon to be less than the chromosome segment 8q24.12,q24.13. The use of region- and locus-specific probes to analyze the organization of highly complex marker structures aided the identification of preferentially amplified genomic regions. The resultant amplifications could harbor gene(s) driving disease progression. © 2003 Wiley-Liss, Inc. [source]


Prostate cancer aggressiveness locus on chromosome segment 19q12,q13.1 identified by linkage and allelic imbalance studies

GENES, CHROMOSOMES AND CANCER, Issue 4 2003
Phillippa J. Neville
Whole-genome scan studies recently identified a locus on chromosome segments 19q12,q13.11 linked to prostate tumor aggressiveness by use of the Gleason score as a quantitative trait. We have now completed finer-scale linkage mapping across this region that confirmed and narrowed the candidate region to 2 cM, with a peak between markers D19S875 and D19S433. We also performed allelic imbalance (AI) studies across this region in primary prostate tumors from 52 patients unselected for family history or disease status. A high level of AI was observed, with the highest rates at markers D19S875 (56%) and D19S433 (60%). Furthermore, these two markers defined a smallest common region of AI of 0.8 Mb, with 15 (29%) prostate tumors displaying interstitial AI involving one or both markers. In addition, we noted a positive association between AI at marker D19S875 and extension of tumor beyond the margin (P = 0.02) as well as a higher Gleason score (P = 0.06). These data provide strong evidence that we have mapped a prostate tumor aggressiveness locus to chromosome segments 19q12,q13.11 that may play a role in both familial and non-familial forms of prostate cancer. © 2003 Wiley-Liss, Inc. [source]


TCL1 is activated by chromosomal rearrangement or by hypomethylation

GENES, CHROMOSOMES AND CANCER, Issue 4 2001
Martin R. Yuille
TCL1 is an oncogene activated by recurrent reciprocal translocations at chromosome segment 14q32.1 in the most common of the mature T-cell malignancies, T-cell prolymphocytic leukemia. It acts to transport Akt1 to the nucleus and enhance Akt1's serine-threonine kinase activity. TCL1 is also expressed in the B-cell malignancy, Burkitt's lymphoma (BL). However, 14q32.1 breakpoints have not been detected in BL, and we therefore investigated in more detail how expression was activated. No evidence for rearrangement near TCL1 was found in BL. Instead, a NotI site adjacent to the TATA box in the TCL1 promoter was found to be unmethylated. By contrast, tumor cell lines not expressing TCL1 were fully methylated at this NotI site, while normal somatic cells were hemimethylated. We also found that TCL1 was expressed in B-cell chronic lymphocytic leukemia (CLL) and the related disorder splenic lymphoma with villous lymphocytes (unlike in normal mature B-cells), and that the NotI site was unmethylated on both alleles. This correlation of repression and methylation was tested in vitro. When cells with both alleles methylated at the NotI site were demethylated, TCL1 expression was induced. These data provide evidence that in mature B-cell malignancies there is an alternative mechanism of TCL1 activation that apparently involves loss of methylation of one promoter allele. We discuss the significance of this for CLL tumorigenesis and for genomewide hypomethylation in CLL. © 2001 Wiley-Liss, Inc. [source]


Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina

PLANT BREEDING, Issue 4 2008
G. F. Marais
Abstract An Aegilops peregrina (Hackel in J. Fraser) Maire & Weiller accession that showed resistance to mixed leaf rust (Puccinia triticina Eriks.) inoculum was crossed with, and backcrossed to, hexaploid wheat (Triticum aestivum L.). During backcrossing a chromosome segment containing a leaf rust resistance gene (here designated Lr59) was spontaneously translocated to wheat chromosome 1A. Meiotic, monosomic and microsatellite analyses suggested that the translocated segment replaced most of, or the complete, 1AL arm, and probably resulted from centromeric breaks and fusion. The translocation, of which hexaploid wheat line 0306 is the appropriate source material, provided seedling leaf rust resistance against a wide range of South African and Canadian pathotypes. [source]


Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in common wheat

PLANT BREEDING, Issue 1 2003
J. Z. Groenewald
Abstract Amplified fragment length polymorphism (AFLP) markers linked to the Aegilops ventricosa -derived chromosome segment in ,VPM1' on which the eyespot resistance gene, Pch1, and the endopeptidase gene, Ep-D1b, occur were identified. One marker was isolated from the gel, cloned and sequenced. Sequence analysis revealed a microsatellite repeat motif. Sequence-specific primers were designed to amplify a product containing the repeat motif, and the microsatellite marker was tested for cosegregation with the Ep-D1b allele. Distinct alleles were produced by the Pch1 sources, normal wheat and wheat containing the Lr19 translocation. A recombination frequency of 0.02 was calculated between the microsatellite marker and Ep-D1. [source]


A familial Xp+ chromosome detected during fetal karyotyping, which is associated with short stature in four generations of a Turkish family

PRENATAL DIAGNOSIS, Issue 4 2003
B. Karaman
Abstract The short-stature homeobox-containing gene (SHOX) on chromosome Xp22.3 was recently identified as an important determinant of the stature phenotype. Deletions of the SHOX gene, some of them due to structural chromosome abnormalities, have been described in patients with idiopathic short stature and Leri-Weill syndrome. Additionally, haploinsufficiency of SHOX is a main cause for short stature seen in patients with Turner syndrome. Here we report an unusual X-chromosome abnormality, which was detected during a fetal karyotyping performed because of a previous child with Down syndrome. GTG banding demonstrated an extra chromosome segment on the terminal part of the short arm of chromosome X in the index case (karyotype: 46,X,Xp+). The same chromosomal abnormality was found in the mother and the maternal grandmother. All carriers of this chromosomal abnormality presented with short stature but no other associated symptoms. Whole chromosome painting of X revealed a homogeneous painting of the abnormal X chromosome indicating that no other chromosome was involved. Additional FISH studies with probe DXS1140 (Kallmann probe at Xp22.3), Quint-Essential X-Specific DNA (DMD probe at Xp21.2), XIST (at Xq13.2), and Tel Xq/Yq were performed, and no abnormality was observed in the intensities or the localizations of the probes signals. However, applying a specific SHOX gene probe (derived from cosmid LLNONO3M34F5) showed a loss of signal on the derivative X chromosome. Our results show that the Xp+ generation led to a deletion of the complete SHOX gene and caused short stature in the presented family. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Construction and characterization of an ovine BAC contig spanning the callipyge locus

ANIMAL GENETICS, Issue 6 2000
K Segers
We describe the construction of an ovine BAC contig spanning a 4·6 centimorgan (cM) chromosome segment known to contain the callipyge (CLPG) locus. The contig comprises 21 ovine BAC clones jointly covering approximately 900 kilobases (Kb). Two gaps in the BAC contig, spanning 10 and 7·5 Kb, respectively, were bridged by long range PCR. The corresponding chromosome region was shown to be characterized by an unusually low Kb to cM ratio (164 Kb/cM) and a high density of NotI sites (1:126 Kb) possibly reflecting a high gene density in the corresponding chromosome region. Equivalent amplification of 64 sequence tagged sites spanning the corresponding region from homozygous +/+ and CLPG/CLPG individuals disproves the hypothesis of a major deletion causing the CLPG mutation. [source]


Prostate cancer aggressiveness locus on chromosome segment 19q12,q13.1 identified by linkage and allelic imbalance studies

GENES, CHROMOSOMES AND CANCER, Issue 4 2003
Phillippa J. Neville
Whole-genome scan studies recently identified a locus on chromosome segments 19q12,q13.11 linked to prostate tumor aggressiveness by use of the Gleason score as a quantitative trait. We have now completed finer-scale linkage mapping across this region that confirmed and narrowed the candidate region to 2 cM, with a peak between markers D19S875 and D19S433. We also performed allelic imbalance (AI) studies across this region in primary prostate tumors from 52 patients unselected for family history or disease status. A high level of AI was observed, with the highest rates at markers D19S875 (56%) and D19S433 (60%). Furthermore, these two markers defined a smallest common region of AI of 0.8 Mb, with 15 (29%) prostate tumors displaying interstitial AI involving one or both markers. In addition, we noted a positive association between AI at marker D19S875 and extension of tumor beyond the margin (P = 0.02) as well as a higher Gleason score (P = 0.06). These data provide strong evidence that we have mapped a prostate tumor aggressiveness locus to chromosome segments 19q12,q13.11 that may play a role in both familial and non-familial forms of prostate cancer. © 2003 Wiley-Liss, Inc. [source]


Epistatic kinship a new measure of genetic diversity for short-term phylogenetic structures , theoretical investigations

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 3 2006
C. Flury
Summary The epistatic kinship describes the probability that chromosomal segments of length x in Morgan are identical by descent. It is an extension from the single locus consideration of the kinship coefficient to chromosomal segments. The parameter reflects the number of meioses separating individuals or populations. Hence it is suggested as a measure to quantify the genetic distance of subpopulations that have been separated only few generations ago. Algorithms for the epistatic kinship and the extension of the rules to set up the rectangular relationship matrix are presented. The properties of the epistatic kinship based on pedigree information were investigated theoretically. Pedigree data are often missing for small livestock populations. Therefore, an approach to estimate epistatic kinship based on molecular marker data are suggested. For the epistatic kinship based on marker information haplotypes are relevant. An easy and fast method that derives haplotypes and the respective frequencies without pedigree information was derived based on sampled full-sib pairs. Different parameters of the sampling scheme were tested in a simulation study. The power of the method decreases with increasing segment length and with increasing number of segments genotyped. Further, it is shown that the efficiency of the approach is influenced by the number of animals genotyped and the polymorphism of the markers. It is discussed that the suggested method has a considerable potential to allow a phylogenetic differentiation between close populations, where small sample size can be balanced by the number, the length, and the degree of polymorphism of the chromosome segments considered. [source]


Effect of the ph1b mutant on chromosome pairing in hybrids between Dasypyrum villosum and Triticum aestivum

PLANT BREEDING, Issue 4 2001
M. Q. Yu
Abstract Chromosome pairing was analysed in F1 hybrids of the wheat cultivar ,Chinese Spring' (CS) and its ph1b mutant (CSphlb) with Dasypyrum villosum. On average, 1.61 chromosomes per cell paired in the hybrid CS ×D. villosum, but 14.43 in the hybrid CS ph1b×D. villosum. Genomic fluorescence in situ hybridization (GISH) revealed three types of homoeologous association between wheat (W) and D. villosum (D) chromosomes (W-D, D-W-W and D-W-D) in pollen mother cells of the CS ph1b×D. villosum hybrid, and only one type (W-W), in the CS ×D. villosum hybrid. Both F1 hybrids were self-sterile. The seed set of the backcross of CS ×D. villosum with CS was 6.67% and that of CS ph1b×D. villosum with CS or CS ph1b was only 0.45%. The chromosome number of BC1 plants varied from 48 to 72. Translocations of chromosome segments or entire arms between wheat and D. villosum chromosomes were detected by GISH in the BC1 plants from the backcross of CS ph1b×D. villosum to CS ph1b. [source]


Genetic mapping of the belt pattern in Brown Swiss cattle to BTA3

ANIMAL GENETICS, Issue 2 2009
C. Drögemüller
Summary The white belt pattern of Brown Swiss cattle is characterized by a lack of melanocytes in a stretch of skin around the midsection. This pattern is of variable width and sometimes the belt does not fully circle the body. To identify the gene responsible for this colour variation, we performed linkage mapping of the belted locus using six segregating half-sib families including 104 informative meioses for the belted character. The pedigree confirmed a monogenic autosomal dominant inheritance of the belted phenotype in Brown Swiss cattle. We performed a genome scan using 186 microsatellite markers in a subset of 88 animals of the six families. Linkage with the belt phenotype was detected at the telomeric region of BTA3. Fine-mapping and haplotype analysis using 19 additional markers in this region refined the critical region of the belted locus to a 922-kb interval on BTA3. As the corresponding human and mouse chromosome segments contain no obvious candidate gene for this coat colour trait, the mutation causing the belt pattern in the Brown Swiss cattle might help to identify an unknown gene influencing skin pigmentation. [source]


A pooled analysis of karyotypic patterns, breakpoints and imbalances in 783 cytogenetically abnormal multiple myelomas reveals frequently involved chromosome segments as well as significant age- and sex-related differences

BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2003
Thérèse Nilsson
Summary. The cytogenetic features (ploidy, complexity, breakpoints, imbalances) were ascertained in 783 abnormal multiple myeloma (MM) cases to identify frequently involved chromosomal regions as well as a possible impact of age/sex. The series included MM patients from the Mitelman Database of Chromosome Aberrations in Cancer and from our own laboratory. Hyperdiploidy was most common, followed by hypodiploidy, pseudodiploidy and tri-/tetraploidy. Most cases were complex, with a median of eight changes per patient. The distribution of modal numbers differed between younger and older patients, but was not related to sex. No sex- or age-related differences regarding the number of anomalies were found. The most frequent genomic breakpoints were 14q32, 11q13, 1q10, 8q24, 1p11, 1q21, 22q11, 1p13, 1q11, 19q13, 1p22, 6q21 and 17p11. Breaks in 1p13, 6q21 and 11q13 were more common in the younger age group. The most frequent imbalances were +,9, ,,13, +,15, +,19, +,11 and ,,Y. Trisomy 11 and monosomy 16 were more common among men, while ,X was more frequent among women. Loss of Y as the sole change and +,5 were more common in elderly patients, and ,,14 was more frequent in the younger age group. The present findings strongly suggest that some karyotypic features of MM are influenced by endogenous and/or exogenous factors. [source]