Chromosomal Locations (chromosomal + locations)

Distribution by Scientific Domains


Selected Abstracts


Chromosomal mapping of ANTP class homeobox genes in amphioxus: piecing together ancestral genomes

EVOLUTION AND DEVELOPMENT, Issue 5 2003
L. F. C. Castro
Summary Homeobox genes encode DNA-binding proteins, many of which are implicated in the control of embryonic development. Evolutionarily, most homeobox genes fall into two related clades: the ANTP and the PRD classes. Some genes in ANTP class, notably Hox, ParaHox, and NK genes, have an intriguing arrangement into physical clusters. To investigate the evolutionary history of these gene clusters, we examined homeobox gene chromosomal locations in the cephalochordate amphioxus, Branchiostoma floridae. We deduce that 22 amphioxus ANTP class homeobox genes localize in just three chromosomes. One contains the Hox cluster plus AmphiEn, AmphiMnx, and AmphiDll. The ParaHox cluster resides in another chromosome, whereas a third chromosome contains the NK type homeobox genes, including AmphiMsx and AmphiTlx. By comparative analysis we infer that clustering of ANTP class homeobox genes evolved just once, during a series of extensive cis -duplication events of genes early in animal evolution. A trans -duplication event occurred later to yield the Hox and ParaHox gene clusters on different chromosomes. The results obtained have implications for understanding the origin of homeobox gene clustering, the diversification of the ANTP class of homeobox genes, and the evolution of animal genomes. [source]


High efficiency site-specific genetic engineering of the mosquito genome

INSECT MOLECULAR BIOLOGY, Issue 2 2006
D. D. Nimmo
Abstract Current techniques for the genetic engineering of insect genomes utilize transposable genetic elements, which are inefficient, have limited carrying capacity and give rise to position effects and insertional mutagenesis. As an alternative, we investigated two site-specific integration mechanisms in the yellow fever mosquito, Aedes aegypti. One was a modified CRE/lox system from phage P1 and the other a viral integrase system from Streptomyces phage phi C31. The modified CRE/lox system consistently failed to produce stable germline transformants but the phi C31 system was highly successful, increasing integration efficiency by up to 7.9-fold. The ability to efficiently target transgenes to specific chromosomal locations and the potential to integrate very large transgenes has broad applicability to research on many medically and economically important species. [source]


A Genetic Map Constructed Using a Doubled Haploid Population Derived from Two Elite Chinese Common Wheat Varieties

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2008
Kun-Pu Zhang
Abstract Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F1 -derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed. [source]


Identification and Mapping of Two New Genes Conferring Resistance to Powdery Mildew from Aegilops tauschii (Coss.) Schmal

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 10 2006
Xiao-Li Sun
Abstract Two powdery mildew resistance genes were identified from Aegilops tauschii accessions Y201 and Y212 and mapped using two different F2 populations derived from the crosses between susceptible accession Y2272 and Y201, and susceptible accession Y2263 and Y212. Genetic analysis of resistance to powdery mildew indicated that the resistance of Y201 was controlled by a single dominant gene, whereas the resistance of Y212 was controlled by a single recessive gene. We have temporarily designated these genes as PmY201 and PmY212, respectively. By bulk segregation analysis, six microsatellite markers including Xgwm174, cfd26, cfd57, cfd102, Xgwm583 and Xgwm639 were found to be linked to PmY201 with genetic distances of 5.2, 7.7, 9.6, 12.5, 20.2 and 22.1 cM, respectively. Five SSR markers, including cfd57, Xgwm182, cfd7, cfd102, and cfd12, were found to be linked to PmY212 with distances of 5.6, 7.2, 11.5, 14.7, and 18.5 cM, respectively. According to the locations of the linked markers, the two resistance genes were located in the 5DL region. Based on the chromosomal locations and the resistance patterns of the two genes, we propose that PmY201 and PmY212 are two novel powdery mildew resistance genes, and are suitable for marker-assisted selection. (Managing editor: Ya-Qin Han) [source]


A highly efficient gene-targeting system for Aspergillus parasiticus

LETTERS IN APPLIED MICROBIOLOGY, Issue 5 2008
P.-K. Chang
Abstract Aims:, To establish a system that greatly increases the gene-targeting frequency in Aspergillus parasiticus. Methods and Results:, The ku70 gene, a gene of the nonhomologous end-joining (NHEJ) pathway, was replaced by the nitrate reductase gene (niaD) in A. parasiticus RHN1 that accumulates O -methylsterigmatocystin (OMST). The NHEJ-deficient strain, RH,ku70, produced conidia, sclerotia and OMST normally. It had identical sensitivity as RHN1 to the DNA-topoisomerase I complex inhibitor, camptothecin, and the DNA-damaging agent, melphalan. For targeting an aflatoxin biosynthetic pathway gene, adhA, partial restriction enzyme recognition sequences in its flanking regions were manipulated to create homologous ends for integration. Using a linearized DNA fragment that contained Aspergillus oryzae pyrithiamine resistance gene (ptr) marker the adhA -targeting frequency in RH,ku70 reached 96%. Conclusions:, The homologous recombination pathway is primarily responsible for repair of DNA damages in A. parasiticus. The NHEJ-deficient RH,ku70, easy creation of homologous ends for integration, and the ptr -based selection form a highly efficient gene-targeting system. It substantially reduces the time and workload necessary to obtain knockout strains for functional studies. Significance and Impact of the Study:, The developed system not only streamlines targeted gene replacement and disruption but also can be used to target specific chromosomal locations like promoters or intergenic regions. It will expedite the progresses in the functional genomic studies of A. parasiticus and Aspergilllus flavus. [source]


Inferring the evolutionary history of Drosophila americana and Drosophila novamexicana using a multilocus approach and the influence of chromosomal rearrangements in single gene analyses

MOLECULAR ECOLOGY, Issue 12 2008
RAMIRO MORALES-HOJAS
Abstract The evolutionary history of closely related organisms can prove sometimes difficult to infer. Hybridization and incomplete lineage sorting are the main concerns; however, genome rearrangements can also influence the outcome of analyses based on nuclear sequences. In the present study, DNA sequences from 12 nuclear genes, for which the approximate chromosomal locations are known, have been used to estimate the evolutionary history of two forms of Drosophila americana (Drosophila americana americana and Drosophila americana texana) and Drosophila novamexicana (virilis group of species). The phylogenetic analysis of the combined data set resulted in a phylogeny showing reciprocal monophyly for D. novamexicana and D. americana. Single gene analyses, however, resulted in incongruent phylogenies influenced by chromosomal rearrangements. Genetic differentiation estimates indicated a significant differentiation between the two species for all genes. Within D. americana, however, there is no evidence for differentiation between the chromosomal forms except at genes located near the X/4 fusion and Xc inversion breakpoint. Thus, the specific status of D. americana and D. novamexicana is confirmed, but there is no overall evidence for genetic differentiation between D. a. americana and D. a. texana, not supporting a subspecific status. Based on levels of allele and nucleotide diversity found in the strains used, it is proposed that D. americana has had a stable, large population during the recent past while D. novamexicana has speciated from a peripheral southwestern population having had an ancestral small effective population size. The influence of chromosomal rearrangements in single gene analyses is also examined. [source]


Mapping of genes expressed in activated porcine Peyer's patch

ANIMAL GENETICS, Issue 1 2006
C. M. T. Dvorak
Summary To determine the chromosomal locations for genes expressed in porcine Peyer's patches, polymerase chain reaction-based mapping of expressed sequence tags (ESTs) isolated from a porcine Peyer's patch-specific cDNA library was performed across a 6500-rad swine radiation hybrid panel. A total of 116 ESTs were mapped with LOD scores >6.0, and another 11 ESTs had LOD scores between 5.0 and 6.0. Of these 127 ESTs, 63% matched known genes ([source]