| |||
Choriocarcinoma Cell Lines (choriocarcinoma + cell_line)
Selected AbstractsORIGINAL ARTICLE: Effect of Progesterone on HLA-E Gene Expression in JEG-3 Choriocarcinoma Cell LineAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2009Zhongying Huang Problem, Among class Ib human leukocyte antigen (HLA) molecules, HLA-E is known to be a major ligand of CD94/NKG2 receptor on natural killer (NK) cells, and to play a pivotal role in recognition of extravillous trophoblasts (EVTs) by maternal immune cells. However, it is scarcely known how HLA-E expression is regulated in EVTs. Method of study, In this study, we investigated whether progesterone, an essential hormone in maintaining pregnancy, regulated HLA-E expression in EVT-like cell line, JEG-3. HLA-E mRNA amount in cultured JEG-3 cells was assessed by real-time PCR and cell-surface HLA-E protein was analyzed by flowcytometry. Results, Real-time PCR showed 3.5-fold increase 1 hour after the addition of 1000 ng/ml progesterone. This response was dimished by the addition of RU486, an antagonist for progesterone receptor. Flowcytometry indicated that 1000 ng/ml progesterone slightly enhanced HLA-E expression on the surface of JEG-3. Conclusion, These results suggest that progesterone up-regulates HLA-E expression in JEG-3 cells through the pathway mediated by progesterone receptor. Our findings might give a new insight into immunomodulatory function of progesterone at fetomaternal interface. [source] SHORT COMMUNICATION: Interleukin-17 Increased Progesterone Secretion by JEG-3 Human Choriocarcinoma CellsAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2009Sutatip Pongcharoen Problem, JEG-3 choriocarcinoma cell line has previously been reported to express a receptor for interleukin (IL)-17. The involvement of IL-17 in the production of progesterone and human chorionic gonadotropin by placental trophoblast has not been investigated. Method of study, The present study investigated the in vitro effect of IL-17 on progesterone and human chorionic gonadotropin (hCG) secretion by JEG-3 cells. Both hormones were quantified using enzyme-linked immunosorbent assays. Results, The results showed that IL-17 significantly increased progesterone secretion at 6 (P < 0.001) and 24 (P < 0.01) hr, while this cytokine had no effect on hCG secretion. Conclusion, Interleukin-17 may regulate the function of JEG-3 cells through increased progesterone secretion. [source] A Th2 Chemokine, TARC, Produced by Trophoblasts and Endometrial Gland Cells, Regulates the Infiltration of CCR4+ T Lymphocytes into Human Decidua at Early PregnancyAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2002HIROSHI TSUDA PROBLEM:,A chemokine receptor, CCR4 preferentially expressed on type 2 helper T (Th2-type) cells, and its ligand, thymus and activation regulated chemokine -(TARC/CCL)- play important roles in the recruitment of Th2-type cells. We examined the distribution of CCR4 expressing CD4+ and CD8+ -T cells in human decidua at early pregnancy, and localized TARC in the decidual tissue and chorionic tissue. METHOD OF STUDY:,Decidual tissue was obtained by legal abortion. The percentages of CCR4 expressing CD4+ and CD8+ -T cells were analyzed by flow cytometry. Localization of TARC protein was evaluated by immunofluorescence staining. The expression of TARC mRNA in the choriocarcinoma cell line and endometrial cell line was analyzed by reverse transcriptase polymerase chain reaction (RT,PCR). RESULT:,The percentages of CCR4+ cells in CD4+ -T cells and CD8+ -T cells were significantly increased in human early pregnancy decidua compared with those in peripheral blood. An another marker of human Th2 and Tc2 cells, CRTH2 molecules was also expressed on CCR4+CD4+ -T cells and CCR4+CD8+ -T cells. In addition, we found that trophoblasts, uterine epithelial cells and endometrial gland cells produce TARC by immunohistochemical staining and the RT-PCR method. CONCLUSION:,Our findings imply that TARC secreted in decidua mediates the infiltration of CCR4+ T-cell migration into the fetomaternal interface, decidua, resulting in the maintenance of pregnancy. [source] Activated Stat3 expression in gestational trophoblastic disease: correlation with clinicopathological parameters and apoptotic indicesHISTOPATHOLOGY, Issue 2 2008H Y Chan Aims:, To assess the expression profile of the activated form of signal transducer and activator of transcription (Stat)3 in gestational trophoblastic disease (GTD) and correlate the findings with clinicopathological parameters. Methods and results:, By immunohistochemistry, both cytoplasmic and nuclear expression of p-Stat3-Ser727 was demonstrated in 88 trophoblastic tissues, including placentas and GTD. Nuclear immunoreactivity of p-Stat3-Ser727 was significantly higher in hydatidiform mole (HM) (P < 0.001) and choriocarcinoma (P = 0.009) when compared with normal placentas. Placental site trophoblastic tumours (PSTT) and epithelioid trophoblastic tumours (ETT) also demonstrated higher nuclear p-Stat3-Ser727 expression than their normal trophoblast counterparts. Higher p-Stat3-Ser727 expression was confirmed in choriocarcinoma cell lines, JEG-3 and JAR, than in a normal trophoblast cell line, with both nuclear and cytoplasmic fractions demonstrated by immunoblotting. Spontaneously regressed HM showed significantly increased nuclear and cytoplasmic p-Stat3-Ser727 immunoreactivity over those that developed gestational trophoblastic neoplasia (GTN) (P = 0.013, P = 0.039). There was a significant positive and inverse correlation between nuclear p-Stat3-Ser727 immunoreactivity and apoptotic indices [terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling and M30 CytoDeath antibody] (P = 0.001, P < 0.001, Spearman's , test) and Bcl-2 expression (P = 0.034), respectively. Conclusions:, p-Stat3-Ser727 plays a role in the pathogenesis of GTD, probably through the regulation of apoptosis. p-Stat3-Ser727 immunoreactivity is a potential marker in predicting GTN in HM. [source] Phosphorylated osteopontin promotes migration of human choriocarcinoma cells via a p70 S6 kinase-dependent pathwayJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2005Rania Al-Shami Abstract This study examined the role of osteopontin (OPN), a phosphorylated secreted glycoprotein, in the promotion of trophoblastic cell migration, an early event in the embryo implantation process. Three human choriocarcinoma cell lines, namely JAR, BeWo, and JEG-3, were treated with variants of OPN differing in the extent of phosphorylation following sequential dephosphorylation with tartrate-resistant acid phosphatase (TRAP), and their migratory response was measured. The highly phosphorylated human milk form of OPN (OPN-1) strongly triggered migration in all three cell lines, whereas the less phosphorylated variants, OPN-2a and OPN-2b, failed to stimulate migration. JAR cell migration in response to OPN-1 was accompanied by a rapid rearrangement of actin filaments to the cellular membrane. Using broad spectrum protein kinase profiling, we identified p70 S6 kinase as a major signal transduction pathway activated by OPN-1 during the migratory response in JAR cells. Activation was blocked completely by rapamycin and LY294002, thus demonstrating that OPN-1-stimulated migration occurs through mTOR and PI3K pathways, respectively. Conversely, PD98059 did not affect the activation of p70 S6 kinase by OPN-1, therefore, this response does not involve the Ras/ MAPK signaling cascade. Together, these data show that the highly phosphorylated human OPN-1 can stimulate trophoblastic cell migration and provides evidence for the involvement of the PI3K/mTOR/p70 S6 kinase pathway in the JAR cells response. Because both OPN and TRAP are expressed in the uterus during early pregnancy, it is conceivable that extracellular phosphatases such as TRAP may modify OPN charge state and thus modulate cell migration. © 2005 Wiley-Liss, Inc. [source] Gene for porcine pregnancy-associated glycoprotein 2 (poPAG2): Its structural organization and analysis of its promoter,MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2001Bozena Szafranska Abstract The pregnancy-associated glycoproteins (PAG) are abundant secretory products of the placental trophectoderm of ungulate species. They are structurally related to pepsin, having the capability to bind peptides. However, many cannot function as enzymes due to amino acid substitutions in and around the catalytic site. Here, we demonstrate that pigs, like cattle and sheep, but unlike equids, have multiple PAG genes. One of the transcribed porcine PAG (poPAG) genes, the one for poPAG2, was cloned. It had a nine-exon organization similar to that of other mammalian aspartic proteinase genes with an atypical TATA sequence. A total of 1.2 kbp upstream from exon 1 was sequenced. This region shared identity (>,65%) with the promoter regions of the bovine (bo) PAG1, boPAG2 and equine (eq) PAG genes, but not with other aspartyl proteinase genes, including that of pepsinogen A. Nor were there clear similarities to the promoters of other genes with trophoblast-specific expression. Of the different poPAG2 promoter constructs tested in transfection experiments in two human (JAr and JEG3) and one rat (Rcho) choriocarcinoma cell lines, only the shortest (,149 bp) was required to provide full expression of a luciferase reporter. Although this short promoter was not active in Cos-1 and L-929 cells, it was active in CHO cells, a transformed non-trophoblast hamster ovarian cell line. Co-transfection of Ets2 elevated the activity of this short promoter approximately six-fold in JAr cells, but, disruption of the two putative Ets sites did not alter the ability of Ets2 to transactivate the promoter. In the non-trophoblast cell lines, Ets2 failed to elicit any response. Ets2 responsiveness may be a common feature of most or all trophoblast-expressed genes, although in the case of poPAG2, the effect may be indirect. Mol. Reprod. Dev. 60: 137,146, 2001. © 2001 Wiley-Liss, Inc. [source] 1141636674 Differential serine and tyrosine phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) in Jeg-3 choriocarcinoma cell linesAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 6 2006J Roediger Background:, Signal Transducer and Activator of Transcription 3 (STAT3) is an intracellular signalling molecule, which is used by several cytokines, including leukemia inhibitory factor (LIF), epithelial growth factor (EGF), and interleukin-6 (IL-6). It induces a variety of gene transcripts and cell functions. In trophoblast cells and in tumor cells, its tyrosine phosphorylation is directly linked to their invasiveness. The regulation and function of STAT3 serine phosphorylation is still widely unclear. Material and Methods:, Jeg-3 choriocarcinoma cells were stimulated with different concentrations of EGF, IL-6 and LIF. STAT3 serine (727) and tyrosine (705) phosphorylation were analyzed 5,60 min after stimulation by SDS-PAGE electrophoresis followed by Western blotting. Results:, Jeg-3 cells display spontaneous STAT3 serine phosphorylation. 100 ng/mL EGF induces a time-dependent reduction starting 15 min after stimulation. Tyrosine phosphorylation does not occur spontaneously, but is strongly induced by EGF at all analyzed time points. LIF induces tyrosine phosphorylation, but affects serine phosphorylation only very slightly. IL-6 did not influence neither serine phosphorylation nor tyrosine phosphorylation. Discussion:, The EGF induced STAT3 tyrosine phosphorylation may be responsible for its invasion triggering capacities. The parallel reduction of serine phosphorylation may enhance this effect. LIF was formerly shown to enhance trophoblast invasion via STAT3 tyrosine phosphorylation. IL-6 displays very little effects on STAT3 and seems to use other pathways for signalling. [source] 1141638491 Hepatocyte growth factor (HGF) stimulates mammalian target of rapamycin (mTOR) in choriocarcinoma cell lines and human trophoblast cellsAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 6 2006S Busch Introduction:, Hepatocyte growth factor (HGF), interleukin-6 (IL-6) and insulin-like growth factor-II (IGF-II) are involved in the regulation of trophoblast cell migration and invasion. Signal Transducer and Activator of Transcription 3 (STAT3) and Mammalian Target Of Rapamycin (mTOR) signalling regulate cell invasion, growth and proliferation. mTOR plays also a key role during embryogenesis. Knock-out mice embryos die after implantation and blastocysts trophoblast outgrowth is reduced. Aim:, Stimuli which might trigger such invasive behaviour through mTOR should be defined. Methods:, The human choriocarcinoma cell lines JEG-3, JAR, the human choriocarcinoma-trophoblast hybrid AC1-M59 and human term trophoblast cells were stimulated with HGF, IL-6 or IGF-II. At several time points, the phosphorylation level of mTOR and STAT3 were tested by Western blot. STAT3 DNA-binding capacity was analyzed by Electrophorectic Mobility Shift Assay (EMSA). To examine the role of mTOR for invasion and proliferation, mTOR expression was silenced by RNA interference (RNAi). Results:, HGF, IGF-II and IL-6 did neither induce tyrosine (705) phosphorylation of STAT3 nor STAT3 DNA binding capacity as assessed by EMSA. HGF led to an increase of mTOR serine (2448) phosphorylation for all cell types after 15 and 30 min while IL-6 and IGF-II did not induce mTOR phosphorylation. Simultaneously, HGF decreased STAT3 serine (727) phosphorylation. mTOR silencing in AC1-M59 correlates with reduced proliferation and invasion. STAT3 expression was not affected by mTOR knock down. Conclusion:, HGF triggers mTOR activity in trophoblast and trophoblast-like cells. mTOR is a main regulator of crucial trophoblast functions. [source] |