| |||
Chondrocyte Hypertrophy (chondrocyte + hypertrophy)
Selected AbstractsMatrix metalloproteinase 13,deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte developmentARTHRITIS & RHEUMATISM, Issue 12 2009C. B. Little Objective To investigate the role of matrix metalloproteinase 13 (MMP-13; collagenase 3) in osteoarthritis (OA). Methods OA was surgically induced in the knees of MMP-13,knockout mice and wild-type mice, and mice were compared. Histologic scoring of femoral and tibial cartilage aggrecan loss (0,3 scale), erosion (0,7 scale), and chondrocyte hypertrophy (0,1 scale), as well as osteophyte size (0,3 scale) and maturity (0,3 scale) was performed. Serial sections were stained for type X collagen and the MMP-generated aggrecan neoepitope DIPEN. Results Following surgery, aggrecan loss and cartilage erosion were more severe in the tibia than femur (P < 0.01) and tibial cartilage erosion increased with time (P < 0.05) in wild-type mice. Cartilaginous osteophytes were present at 4 weeks and underwent ossification, with size and maturity increasing by 8 weeks (P < 0.01). There was no difference between genotypes in aggrecan loss or cartilage erosion at 4 weeks. There was less tibial cartilage erosion in knockout mice than in wild-type mice at 8 weeks (P < 0.02). Cartilaginous osteophytes were larger in knockout mice at 4 weeks (P < 0.01), but by 8 weeks osteophyte maturity and size were no different from those in wild-type mice. Articular chondrocyte hypertrophy with positive type X collagen and DIPEN staining occurred in both wild-type and knockout mouse joints. Conclusion Our findings indicate that structural cartilage damage in a mouse model of OA is dependent on MMP-13 activity. Chondrocyte hypertrophy is not regulated by MMP-13 activity in this model and does not in itself lead to cartilage erosion. MMP-13 deficiency can inhibit cartilage erosion in the presence of aggrecan depletion, supporting the potential for therapeutic intervention in established OA with MMP-13 inhibitors. [source] Enhanced Chondrogenesis and Wnt Signaling in PTH-Treated Fractures,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2007Sanjeev Kakar Abstract Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the time-course of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling. Introduction: Since FDA approval of PTH [PTH(1,34); Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Materials and Methods: Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 ,g/kg PTH(1,34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Results: Quantitative ,CT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to osteogenesis over the course of the repair process. In addition, chondrocyte hypertrophy occurred earlier in the PTH-treated callus tissues. Analysis of the expression of potential mediators of PTH actions showed that PTH treatment significantly induced the expression of Wnts 4, 5a, 5b, and 10b and increased levels of unphosphorylated, nuclear localized ,-catenin protein, a central feature of canonical Wnt signaling. Conclusions: These results showed that the PTH-mediated enhancement of fracture repair is primarily associated with an amplification of chondrocyte recruitment and maturation in the early fracture callus. Associated with these cellular effects, we observed an increase in canonical Wnt signaling supporting the conclusion that PTH effects on bone repair are mediated at least in part through the activation of Wnt-signaling pathways. [source] Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-, signalling in endochondral bone growthJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009Anita Woods Abstract Elucidating the signalling pathways that regulate chondrocyte differentiation, such as the actin cytoskeleton and Rho GTPases, during development is essential for understanding of pathological conditions of cartilage, such as chondrodysplasias and osteoarthritis. Manipulation of actin dynamics in tibia organ cultures isolated from E15.5 mice results in pronounced enhancement of endochondral bone growth and specific changes in growth plate architecture. Global changes in gene expression were examined of primary chondrocytes isolated from embryonic tibia, treated with the compounds cytochalasin D, jasplakinolide (actin modifiers) and the ROCK inhibitor Y27632. Cytochalasin D elicited the most pronounced response and induced many features of hypertrophic chondrocyte differentiation. Bioinformatics analyses of microarray data and expression validation by real-time PCR and immunohistochemistry resulted in the identification of the nuclear receptor retinoid related orphan receptor-, (Ror-,) as a novel putative regulator of chondrocyte hypertrophy. Expression of Ror-, target genes, (Lpl, fatty acid binding protein 4 [Fabp4], Cd36 and kruppel-like factor 5 [Klf15]) were induced during chondrocyte hypertrophy and by cytochalasin D and are cholesterol dependent. Stimulation of Ror-, by cholesterol results in increased bone growth and enlarged, rounded cells, a phenotype similar to chondrocyte hypertrophy and to the changes induced by cytochalasin D, while inhibition of cholesterol synthesis by lovastatin inhibits cytochalasin D induced bone growth. Additionally, we show that in a mouse model of cartilage specific (Col2-Cre) Rac1, inactivation results in increased Hif-1, (a regulator of Rora gene expression) and Ror-,+ cells within hypertrophic growth plates. We provide evidence that cholesterol signalling through increased Ror-, expression stimulates chondrocyte hypertrophy and partially mediates responses of cartilage to actin dynamics. [source] Aberrant hypertrophy in Smad3-deficient murine chondrocytes is rescued by restoring transforming growth factor ,,activated kinase 1/activating transcription factor 2 signaling: A potential clinical implication for osteoarthritisARTHRITIS & RHEUMATISM, Issue 8 2010Tian-Fang Li Objective To investigate the biologic significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and activating transcription factor 2 (ATF-2) in the transforming growth factor , (TGF,) signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Methods Joint disease in Smad3-knockout (Smad3,/,) mice was examined by microfocal computed tomography and histologic analysis. Numerous in vitro methods including immunostaining, real-time polymerase chain reaction, Western blotting, an ATF-2 DNA-binding assay, and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3,/, mice. Results In Smad3,/, mice, an end-stage OA phenotype gradually developed. TGF,-activated kinase 1 (TAK1)/ATF-2 signaling was disrupted in Smad3,/, mouse chondrocytes at the level of p38 MAP kinase (MAPK) activation, resulting in reduced ATF-2 phosphorylation and transcriptional activity. Reintroduction of Smad3 into Smad3,/, cells restored the normal p38 response to TGF,. Phosphorylated p38 formed a complex with Smad3 by binding to a portion of Smad3 containing both the MAD homology 1 and linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAPK phosphatase 1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild-type and Smad3,/, chondrocytes. P38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms ,, ,, and ,, but not ,. Conclusion Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1/ATF-2 signaling, most likely by disrupting the Smad3,phosphorylated p38 complex, thereby promoting p38 dephosphorylation and inactivation by MKP-1. ATF-2 and p38 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic approach for OA. [source] Chondrocyte innate immune myeloid differentiation factor 88,dependent signaling drives procatabolic effects of the endogenous toll-like receptor 2/toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in miceARTHRITIS & RHEUMATISM, Issue 7 2010Ru Liu-Bryan Objective Toll-like receptor 2 (TLR-2)/TLR-4,mediated innate immunity serves as a frontline antimicrobial host defense, but also modulates tissue remodeling and repair responses to endogenous ligands released during low-grade inflammation. We undertook the present study to assess whether the endogenous TLR-2/TLR-4 ligands low molecular weight hyaluronan (LMW-HA) and high mobility group box chromosomal protein 1 (HMGB-1), which are increased in osteoarthritic (OA) joints, drive procatabolic chondrocyte responses dependent on TLR-2 and TLR-4 signaling through the cytosolic adaptor myeloid differentiation factor 88 (MyD88). Methods We studied mature femoral head cap cartilage explants and immature primary knee articular chondrocytes from TLR-2/TLR-4,double-knockout, MyD88-knockout, and congenic wild-type mice. Generation of nitric oxide (NO), degradation of hyaluronan, release of HMGB-1, matrix metalloproteinase 3 (MMP-3), and MMP-13, and protein expression of type X collagen were assessed by Griess reaction and Western blotting analyses. Expression of messenger RNA for type II and type X collagen, MMP-13, and RUNX-2 was examined by real-time quantitative reverse transcription,polymerase chain reaction. Results Interleukin-1, and TLR-2 and TLR-4 ligands induced both HMGB-1 release from chondrocytes and extracellular LMW-HA generation in normal chondrocytes. TLR-2/TLR-4,/, and MyD88,/, mouse cartilage explants and chondrocytes lost the capacity to mount procatabolic responses to both LMW-HA and HMGB-1, demonstrated by >95% suppression of NO production (P < 0.01), and attenuated induction of MMP-3 and MMP-13. Combined deficiency of TLR-2/TLR-4, or of MyD88 alone, also attenuated release of NO and blunted induction of MMP-3 and MMP-13 release. MyD88 was necessary for HMGB-1 and hyaluronidase 2 (which generates LMW-HA) to induce chondrocyte hypertrophy, which is implicated in OA progression. Conclusion MyD88-dependent TLR-2/TLR-4 signaling is essential for procatabolic responses to LMW-HA and HMGB-1, and MyD88 drives chondrocyte hypertrophy. Therefore, LMW-HA and HMGB-1 act as innate immune cytokine-like signals with the potential to modulate chondrocyte differentiation and function in OA progression. [source] ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblastsARTHRITIS & RHEUMATISM, Issue 5 2010Indira Prasadam Objective Previous studies have shown the influence of subchondral bone osteoblasts (SBOs) on phenotypical changes of articular cartilage chondrocytes (ACCs) during the development of osteoarthritis (OA). The molecular mechanisms involved during this process remain elusive, in particular, the signal transduction pathways. The aim of this study was to investigate the in vitro effects of OA SBOs on the phenotypical changes in normal ACCs and to unveil the potential involvement of MAPK signaling pathways during this process. Methods Normal and arthritic cartilage and bone samples were collected for isolation of ACCs and SBOs. Direct and indirect coculture models were applied to study chondrocyte hypertrophy under the influence of OA SBOs. MAPKs in the regulation of the cell,cell interactions were monitored by phosphorylated antibodies and relevant inhibitors. Results OA SBOs led to increased hypertrophic gene expression and matrix calcification in ACCs by means of both direct and indirect cell,cell interactions. In this study, we demonstrated for the first time that OA SBOs suppressed p38 phosphorylation and induced ERK-1/2 signal phosphorylation in cocultured ACCs. The ERK-1/2 pathway inhibitor PD98059 significantly attenuated the hypertrophic changes induced by conditioned medium from OA SBOs, and the p38 inhibitor SB203580 resulted in the up-regulation of hypertrophic genes in ACCs. Conclusion The findings of this study suggest that the pathologic interaction of OA SBOs and ACCs is mediated via the activation of ERK-1/2 phosphorylation and deactivation of p38 phosphorylation, resulting in hypertrophic differentiation of ACCs. [source] Matrix metalloproteinase 13,deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte developmentARTHRITIS & RHEUMATISM, Issue 12 2009C. B. Little Objective To investigate the role of matrix metalloproteinase 13 (MMP-13; collagenase 3) in osteoarthritis (OA). Methods OA was surgically induced in the knees of MMP-13,knockout mice and wild-type mice, and mice were compared. Histologic scoring of femoral and tibial cartilage aggrecan loss (0,3 scale), erosion (0,7 scale), and chondrocyte hypertrophy (0,1 scale), as well as osteophyte size (0,3 scale) and maturity (0,3 scale) was performed. Serial sections were stained for type X collagen and the MMP-generated aggrecan neoepitope DIPEN. Results Following surgery, aggrecan loss and cartilage erosion were more severe in the tibia than femur (P < 0.01) and tibial cartilage erosion increased with time (P < 0.05) in wild-type mice. Cartilaginous osteophytes were present at 4 weeks and underwent ossification, with size and maturity increasing by 8 weeks (P < 0.01). There was no difference between genotypes in aggrecan loss or cartilage erosion at 4 weeks. There was less tibial cartilage erosion in knockout mice than in wild-type mice at 8 weeks (P < 0.02). Cartilaginous osteophytes were larger in knockout mice at 4 weeks (P < 0.01), but by 8 weeks osteophyte maturity and size were no different from those in wild-type mice. Articular chondrocyte hypertrophy with positive type X collagen and DIPEN staining occurred in both wild-type and knockout mouse joints. Conclusion Our findings indicate that structural cartilage damage in a mouse model of OA is dependent on MMP-13 activity. Chondrocyte hypertrophy is not regulated by MMP-13 activity in this model and does not in itself lead to cartilage erosion. MMP-13 deficiency can inhibit cartilage erosion in the presence of aggrecan depletion, supporting the potential for therapeutic intervention in established OA with MMP-13 inhibitors. [source] Calcification of articular cartilage in human osteoarthritisARTHRITIS & RHEUMATISM, Issue 9 2009M. Fuerst Objective Hypertrophic chondrocyte differentiation is a key step in endochondral ossification that produces basic calcium phosphates (BCPs). Although chondrocyte hypertrophy has been associated with osteoarthritis (OA), chondrocalcinosis has been considered an irregular event and linked mainly to calcium pyrophosphate dihydrate (CPPD) deposition. The aim of this study was to determine the prevalence and composition of calcium crystals in human OA and analyze their relationship to disease severity and markers of chondrocyte hypertrophy. Methods One hundred twenty patients with end-stage OA undergoing total knee replacement were prospectively evaluated. Cartilage calcification was studied by conventional x-ray radiography, digital-contact radiography (DCR), field-emission scanning electron microscopy (FE-SEM), and synovial fluid analysis. Cartilage calcification findings were correlated with scores of knee function as well as histologic changes and chondrocyte hypertrophy as analyzed in vitro. Results DCR revealed mineralization in all cartilage specimens. Its extent correlated significantly with the Hospital for Special Surgery knee score but not with age. FE-SEM analysis showed that BCPs, rather than CPPD, were the prominent minerals. On histologic analysis, it was observed that mineralization correlated with the expression of type X collagen, a marker of chondrocyte hypertrophy. Moreover, there was a strong correlation between the extent of mineralization in vivo and the ability of chondrocytes to produce BCPs in vitro. The induction of hypertrophy in healthy human chondrocytes resulted in a prominent mineralization of the extracellular matrix. Conclusion These results indicate that mineralization of articular cartilage by BCP is an indissociable process of OA and does not characterize a specific subset of the disease, which has important consequences in the development of therapeutic strategies for patients with OA. [source] Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type x collagen geneARTHRITIS & RHEUMATISM, Issue 1 2009Akiro Higashikawa Objective Type X collagen and runt-related transcription factor 2 (RUNX-2) are known to be important for chondrocyte hypertrophy during skeletal growth and repair and development of osteoarthritis (OA) in mice. Aiming at clinical application, this study was undertaken to investigate transcriptional regulation of human type X collagen by RUNX-2 in human cells. Methods Localization of type X collagen and RUNX-2 was determined by immunohistochemistry, and their functional interaction was examined in cultured mouse chondrogenic ATDC-5 cells. Promoter activity of the human type X collagen gene (COL10A1) was examined in human HeLa, HuH7, and OUMS27 cells transfected with a luciferase gene containing a 4.5-kb promoter and fragments. Binding to RUNX-2 was examined by electrophoretic mobility shift assay and chromatin immunoprecipitation. Results RUNX-2 and type X collagen were co-localized in mouse limb cartilage and bone fracture callus. Gain and loss of function of RUNX-2 revealed that RUNX-2 is essential for type X collagen expression and terminal differentiation of chondrocytes. Human COL10A1 promoter activity was enhanced by RUNX-2 alone and more potently by RUNX-2 in combination with the coactivator core-binding factor , in all 3 human cell lines examined. Deletion, mutagenesis, and tandem repeat analyses identified the core responsive element as the region between ,89 and ,60 bp (termed the hypertrophy box [HY box]), which showed specific binding to RUNX-2. Other putative RUNX-2 binding motifs in the human COL10A1 promoter did not respond to RUNX-2 in human cells. Conclusion Our findings indicate that the HY box is the core element responsive to RUNX-2 in human COL10A1 promoter. Studies on molecular networks related to RUNX-2 and the HY box will lead to treatments of skeletal growth retardation, bone fracture, and OA. [source] Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cellsARTHRITIS & RHEUMATISM, Issue 5 2008Michael B. Mueller Objective Mesenchymal stem cells (MSCs) are promising candidate cells for cartilage tissue engineering. Expression of cartilage hypertrophy markers (e.g., type X collagen) by MSCs undergoing chondrogenesis raises concern for a tissue engineering application for MSCs, because hypertrophy would result in apoptosis and ossification. To analyze the biologic basis of MSC hypertrophy, we examined the response of chondrifying MSCs to culture conditions known to influence chondrocyte hypertrophy, using an array of hypertrophy-associated markers. Methods Human MSC pellet cultures were predifferentiated for 2 weeks in a chondrogenic medium, and hypertrophy was induced by withdrawing transforming growth factor , (TGF,), reducing the concentration of dexamethasone, and adding thyroid hormone (T3). Cultures were characterized by histologic, immunohistochemical, and biochemical methods, and gene expression was assessed using quantitative reverse transcription,polymerase chain reaction. Results The combination of TGF, withdrawal, a reduction in the level of dexamethasone, and the addition of T3 was essential for hypertrophy induction. Cytomorphologic changes were accompanied by increased alkaline phosphatase activity, matrix mineralization, and changes in various markers of hypertrophy, including type X collagen, fibroblast growth factor receptors 1,3, parathyroid hormone,related protein receptor, retinoic acid receptor ,, matrix metalloproteinase 13, Indian hedgehog, osteocalcin, and the proapoptotic gene p53. However, hypertrophy was not induced uniformly throughout the pellet culture, and distinct regions of dedifferentiation were observed. Conclusion Chondrogenically differentiating MSCs behave in a manner functionally similar to that of growth plate chondrocytes, expressing a very similar hypertrophic phenotype. Under the in vitro culture conditions used here, MSC-derived chondrocytes underwent a differentiation program analogous to that observed during endochondral embryonic skeletal development, with the potential for terminal differentiation. This culture system is applicable for the screening of hypertrophy-inhibitory conditions and agents that may be useful to enhance MSC performance in cartilage tissue engineering. [source] |