Cholinergic Cells (cholinergic + cell)

Distribution by Scientific Domains


Selected Abstracts


Expression of functional NR1/NR2B-type NMDA receptors in neuronally differentiated SK-N-SH human cell line

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002
Marina Pizzi
Abstract The present study demonstrates that human SK-N-SH neuroblastoma cells, differentiated by retinoic acid (RA), express functional NMDA receptors and become vulnerable to glutamate toxicity. During exposure to RA, SK-N-SH cells switched from non-neuronal to neuronal phenotype by showing antigenic changes typical of postmitotic neurons together with markers specific for cholinergic cells. Neuronally differentiated cells displayed positive immunoreactivity to the vesicular acetylcholine transporter and active acetylcholine release in response to depolarizing stimuli. The differentiation correlated with the expression of NMDA receptors. RT-PCR and immunoblotting analysis identified NMDA receptor subunits NR1 and NR2B, in RA-differentiated cultures. The NR1 protein immunolocalized to the neuronal cell population and assembled with the NR2B subunit to form functional N -methyl- d -aspartate (NMDA) receptors. Glutamate or NMDA application, concentration-dependently increased the intracellular Ca2+ levels and acetylcholine release in differentiated cultures, but not in undifferentiated SK-N-SH cells. Moreover, differentiated cultures became vulnerable to NMDA receptor-mediated excitotoxicity. The glutamate effects were enhanced by glycine application and were prevented by the NMDA receptor blocker MK 801, as well as by the NR2B selective antagonist ifenprodil. These data suggest that SK-N-SH cells differentiated by brief treatment with RA may represent an unlimited source of neuron-like cells suitable for studying molecular events associated with activation of human NR1/NR2B receptors. [source]


The galanin receptor 2/3 agonist Gal2-11 protects the SN56 cells against ,-amyloid25,35 toxicity

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2010
S. Pirondi
Abstract The neuropeptide galanin is a modulator of cholinergic function and may play a role in A, peptide-induced degeneration of cholinergic forebrain neurons. We have studied the effect of galanin and its galanin receptor subtype 2/3 agonist Gal2-11on toxicity induced by freshly-prepared ,-amyloid25,35 in the cholinergic cell line SN56. Both nuclear fragmentation and caspase-3 expression were analysed. ,-amyloid25,35 -exposure induced a significant increase in caspase-3 mRNA expression after 30, 60, 90 or 150 min of ,-amyloid25,35 exposure. These effects were abolished in the presence of Gal2-11 (10 nM). Similarly, ,-amyloid25,35 -induced nuclear fragmentation was prevented by the galanin agonist at all time points studied. These findings indicate that the galanin 2/3 agonist Gal2-11 protects SN56 cholinergic cells from ,-amyloid25,35 -induced cell death and that this action is mediated by an early reduction of caspase-3 expression. © 2009 Wiley-Liss, Inc. [source]


Relationships between cholinergic phenotype and acetyl-CoA level in hybrid murine neuroblastoma cells of septal origin

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2003
Hanna Bielarczyk
Abstract High susceptibility of cholinergic neurons to neurotoxic signals may result from their utilization of acetyl-CoA for both energy production and acetylcholine synthesis. SN56 cholinergic cells were transfected stably with cDNA for choline acetyltransferase. Transfected cells (SN56ChAT2) expressed choline acetyltransferase activity and acetylcholine content, 17 times and 2 times higher, respectively, than did nontransfected cells. Transfection did not change pyruvate dehydrogenase but decreased the acetyl-CoA level by 62%. Differentiation by cAMP and retinoic acid caused an increase of choline acetyltransferase activity and decrease of acetyl-CoA levels in both cell lines. Negative correlation was found between choline acetyltransferase activity and acetyl-CoA level in these cells. SN56ChAT2 cells were more susceptible to excess NO than were native SN56 cells, as evidenced by the thiazolyl blue reduction assay. Thus, the sensitivity of cholinergic neurons to pathologic conditions may depend on the cholinergic phenotype-dependent availability of acetyl-CoA. © 2003 Wiley-Liss, Inc. [source]


Neuroadaptations of Cdk5 in Cholinergic Interneurons of the Nucleus Accumbens and Prefrontal Cortex of Inbred Alcohol-preferring Rats Following Voluntary Alcohol Drinking

ALCOHOLISM, Issue 8 2006
Marguerite Charlotte Camp
Background: Neurobiological studies have identified brain areas and related molecular mechanisms involved in alcohol abuse and dependence. Specific cell types in these brain areas and their role in alcohol-related behaviors, however, have not yet been identified. This study examined the involvement of cholinergic cells in inbred alcohol-preferring rats following 1 month of alcohol drinking. Cyclin-dependent kinase 5 (Cdk5) immunoreactivity (IR), a marker of neuronal plasticity, was examined in cholinergic neurons of the nucleus accumbens (NuAcc) and prefrontal cortex (PFC) and other brain areas implicated in alcohol drinking, using dual immunocytochemical (ICC) procedures. Single Cdk5 IR was also examined in several brain areas implicated in alcohol drinking. Methods: The experimental group self-administered alcohol using a 2-bottle-choice test paradigm with unlimited access to 10% (v/v) alcohol and water for 23 h/d for 1 month. An average of 6 g/kg alcohol was consumed daily. Control animals received identical treatment, except that both bottles contained water. Rats were perfused and brain sections were processed for ICC procedures. Results: Alcohol drinking resulted in a 51% increase in Cdk5 IR cholinergic interneurons in the shell NuAcc, while in the PFC there was a 51% decrease in the percent of Cdk5 IR cholinergic interneurons in the infralimbic region and a 46% decrease in Cdk5 IR cholinergic interneurons in the prelimbic region. Additionally, single Cdk5 IR revealed a 42% increase in the central nucleus of the amygdala (CNA). Conclusions: This study identified Cdk5 neuroadaptation in cholinergic interneurons of the NuAcc and PFC and in other neurons of the CNA following 1 month of alcohol drinking. These findings contribute to our understanding of the cellular and molecular basis of alcohol drinking and toward the development of improved region and cell-specific pharmacotherapeutic and behavioral treatment programs for alcohol abuse and alcoholism. [source]


Spatial patterning of cholinergic amacrine cells in the mouse retina

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2008
Irene E. Whitney
Abstract The two populations of cholinergic amacrine cells in the inner nuclear layer (INL) and the ganglion cell layer (GCL) differ in their spatial organization in the mouse retina, but the basis for this difference is not understood. The present investigation examined this issue in six strains of mice that differ in their number of cholinergic cells, addressing how the regularity, packing, and spacing of these cells varies as a function of strain, layer, and density. The number of cholinergic cells was lower in the GCL than in the INL in all six strains. The nearest neighbor and Voronoi domain regularity indexes as well as the packing factor were each consistently lower for the GCL. While these regularity indexes and the packing factor were largely stable across variation in density, the effective radius was inversely related to density for both the GCL and INL, being smaller and more variable in the GCL. Consequently, despite the lower densities in the GCL, neighboring cells were more likely to be positioned closer to one another than in the higher-density INL, thereby reducing regularity and packing. This difference in the spatial organization of cholinergic cells may be due to the cells in the GCL having been passively displaced by fascicles of optic axons and an expanding retinal vasculature during development. In support of this interpretation, we show such displacement of cholinergic somata relative to their dendritic stalks and a decline in packing efficiency and regularity during postnatal development that is more severe for the GCL. J. Comp. Neurol. 508:1,12, 2008. © 2008 Wiley-Liss, Inc. [source]