Choline Oxidase (choline + oxidase)

Distribution by Scientific Domains


Selected Abstracts


Amperometric Biosensors Based on Choline Oxidase Entrapped in Polyacrylamide Microgels

ELECTROANALYSIS, Issue 2-3 2007
López, M. Sánchez-Paniagua
Abstract A choline amperometric biosensor has been designed using as biological component choline oxidase (ChOx) entrapped in polyacrylamide microgels. The working electrode was prepared by holding the enzyme loaded microgels on a platinum electrode by a dialysis membrane. It was found that the optimum microgel cross-linking required to retain ChOx and to allow the diffusion of choline was 7.0%. The response of the biosensor was optimized in relation to pH, temperature and working potential and the following optimal values were obtained: pH,9.0, temperature range between 20 and 30,°C, and potential +0.6,V. Under optimal conditions the sensitivity for choline was 17.45,mA M,1 cm,2, the detection limit 8,,M, and the response linear range from 2×10,5 M to 2×10,4 M. This biosensor has been also used as a nicotine detector due to the inhibition of the catalytic activity of choline oxidase by this compound. Moreover, the simultaneous entrapment of a second enzyme, acetylcholinesterase (AChE), in the microgels makes the biosensor sensible to acetylcholine. [source]


On-line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system

ELECTROPHORESIS, Issue 18 2003
Guoyue Shi
Abstract An effective microseparation system integrated with ring-disc electrodes and two microfluidic devices was fabricated for in vivo determination using a microdialysis pump. The major interference of ascorbic acid (AA) was excluded by direct oxidation with ascorbate oxidase. Glucose, glutamate, and choline were successfully determined simultaneously through the biosensors modified with a bilayer of osmium-poly(4-vinylpyridine)gel-horseradish peroxidase (Os-gel-HRP)/glucose oxidase (GOD), glutamate oxidase (GlutaOD) or choline oxidase (ChOD). To stabilize the biosensors, 0.2% polyethylenimine (PEI) was mixed with the oxidases. The cathodic currents of glucose, glutamate, and choline biosensors started to increase after the standard solutions were injected into the microseparation system. The on-line biosensors show a wide calibration range (10,7,10,5 mol/L) with a detection limit of 10,8 mol/L at the working potential of ,50 mV. The variations of glucose, glutamate, and choline were determined simultaneously in a free moving rat when we perfused the medial frontal cortex with 100 ,mol/L N -methyl- D -aspartate (NMDA) solution, which is the agonist of the NMDA receptor. [source]


Signal-On Electrochemiluminescence Biosensors Based on CdS,Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2009
Xiao-Fei Wang
Abstract This work describes for the first time signal-on electrochemiluminescence (ECL) enzyme biosensors based on cadmium sulfide nanocrystals (CdS NCs) formed in situ on the surface of multi-walled carbon nanotubes (MWCNTs). The MWCNT,CdS can react with H2O2 to generate strong and stable ECL emission in neutral solution. Compared with pure CdS NCs, the MWCNT,CdS can enhance the ECL intensity by 5.3-fold and move the onset ECL potential more positively for about 400,mV, which reduces H2O2 decomposition at the electrode surface and increases detection sensitivity of H2O2. Furthermore, the ECL intensity is less influenced by the presence of oxygen in solution. Benefiting from these properties, signal-on enzyme-based biosensors are fabricated by cross-linking choline oxidase and/or acetylcholine esterase with glutaraldehyde on MWCNT,CdS modified electrodes for detection of choline and acetylcholine. The resulting ECL biosensors show wide linear ranges from 1.7 to 332,µM and 3.3 to 216,µM with lower detection limit of 0.8 and 1.7,µM for choline and acetylcholine, respectively. The common interferents such as ascorbic acid and uric acid in electrochemical enzyme-based biosensors do not interfere with the ECL detection of choline and acetylcholine. Furthermore, both ECL biosensors possess satisfying reproducibility and acceptable stability. [source]


Electrogenerated chemiluminescence of luminol for oxidase-based fibre-optic biosensors

LUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 2 2001
Christophe A. Marquette
Abstract The luminol electrochemiluminescence has been exploited for the development of several fibre-optic biosensors allowing the detection of hydrogen peroxide and of substrates of H2O2 -producing oxidases. Electro-optical flow injection analysis of glucose, lactate, cholesterol and choline are thus described. To perform the experiments, a glassy carbon electrode was polarized at a fixed potential. Luminol was then electrochemically oxidized and could react in the presence of hydrogen peroxide to produce light. Several parameters had to be optimized to obtain reliable optical biosensors. An optimum applied potential of +425 mV between the glassy carbon electrode and the platinum pseudo-reference electrode was determined, allowing the best signal: noise ratio to be obtained. It was also necessary to optimize the experimental conditions for the immobilization of the different oxidases involved (preactivated membranes, chemically activated collagen membranes, photopolymerized matrix). For each biosensor developed, the optimum reaction conditions have been studied: buffer composition, pH, temperature, flow rate and luminol concentration. Under optimal conditions, the detection limits (S/N,=,3) were 30,pmol, 60,pmol, 0.6,nmol and 10,pmol for lactate, glucose, cholesterol and choline, respectively. The miniaturization of electrochemiluminescence-based biosensors has been realized using screen-printed electrodes instead of a glassy carbon macroelectrode, with choline oxidase as a model H2O2 -generating oxidase. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress

PLANT CELL & ENVIRONMENT, Issue 8 2007
EUNG-JUN PARK
ABSTRACT Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants were transformed with a gene for choline oxidase (codA) from Arthrobacter globiformis. The gene product (CODA) was targeted to the chloroplasts (Chl,codA), cytosol (Cyt,codA) or both compartments simultaneously (ChlCyt,codA). These three transgenic plant types accumulated different amounts and proportions of glycinebetaine (GB) in their chloroplasts and cytosol. Targeting CODA to either the cytosol or both compartments simultaneously increased total GB content by five- to sixfold over that measured from the chloroplast targeted lines. Accumulation of GB in codA transgenic plants was tissue dependent, with the highest levels being recorded in reproductive organs. Despite accumulating, the lowest amounts of GB, Chl,codA plants exhibited equal or higher degrees of enhanced tolerance to various abiotic stresses. This suggests that chloroplastic GB is more effective than cytosolic GB in protecting plant cells against chilling, high salt and oxidative stresses. Chloroplastic GB levels were positively correlated with the degree of oxidative stress tolerance conferred, whereas cytosolic GB showed no such a correlation. Thus, an increase in total GB content does not necessarily lead to enhanced stress tolerance, but additional accumulation of chloroplastic GB is likely to further raise the level of stress tolerance beyond what we have observed. [source]


Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 11 2009
Israel S. Fernández
Lignin biodegradation, a key step in carbon recycling in land ecosystems, is carried out by white-rot fungi through an H2O2 -dependent process defined as enzymatic combustion. Pleurotus eryngii is a selective lignin-degrading fungus that produces H2O2 during redox cycling of p -anisylic compounds involving the secreted flavoenzyme aryl-alcohol oxidase (AAO). Here, the 2.4,Ĺ resolution X-ray crystal structure of this oxidoreductase, which catalyzes dehydrogenation reactions on various primary polyunsaturated alcohols, yielding the corresponding aldehydes, is reported. The AAO crystal structure was solved by single-wavelength anomalous diffraction of a selenomethionine derivative obtained by Escherichia coli expression and in vitro folding. This monomeric enzyme is composed of two domains, the overall folding of which places it into the GMC (glucose,methanol,choline oxidase) oxidoreductase family, and a noncovalently bound FAD cofactor. However, two additional structural elements exist in the surroundings of its active site that modulate the access of substrates; these are absent in the structure of the model GMC oxidoreductase glucose oxidase. The folding of these novel elements gives rise to a funnel-like hydrophobic channel that connects the solvent region to the buried active-site cavity of AAO. This putative active-site cavity is located in front of the re side of the FAD isoalloxazine ring and near two histidines (His502 and His546) that could contribute to alcohol activation as catalytic bases. Moreover, three aromatic side chains from two phenylalanines (Phe397 and Phe502) and one tyrosine (Tyr92) at the inner region of the channel form an aromatic gate that may regulate the access of the enzyme substrates to the active site as well as contribute to the recognition of the alcohols that can effectively be oxidized by AAO. [source]


Control of Biocatalytic Transformations by Programmed DNA Assemblies

CHEMISTRY - A EUROPEAN JOURNAL, Issue 12 2010
Ronit Freeman
Abstract This study demonstrates the self-assembly of inhibitor/enzyme-tethered nucleic acid fragments or enzyme I-, enzyme II-modified nucleic acids into functional nanostructures that lead to the controlled inhibition of the enzyme or the activation of an enzyme cascade. In one system, the anti-cocaine aptamer subunits are modified with monocarboxy methylene blue (MB+) as the inhibitor and with choline oxidase (ChOx). The cocaine-induced self-assembly of the aptamer subunits complex results in the inhibition of ChOx by MB+. In a further configuration, two nucleic acids of limited complementarity are functionalized at their 3, and 5, ends with glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively, or with MB+ and ChOx. In the presence of a target DNA sequence, synergistic complementary base-pairing occurs, thus leading to stable supramolecular Y-shaped nanostructures of the nucleic acid units. A GOx/HRP bienzyme cascade or the programmed inhibition of ChOx by MB+ is demonstrated in the resulting nucleic acid nanostructures. A quantitative theoretical model that describes the nucleic acid assemblies and that results in the inhibition of ChOx by MB+ or in the activation of the GOx/HRP cascade, respectively, is provided. [source]