| |||
Cholangiocyte Proliferation (cholangiocyte + proliferation)
Selected AbstractsGastrin reverses established cholangiocyte proliferation and enhanced secretin-stimulated ductal secretion of BDL rats by activation of apoptosis through increased expression of Ca2+ -dependent PKC isoformsLIVER INTERNATIONAL, Issue 2 2003Shannon Glaser Abstract: We posed these questions: (i) Does administration of gastrin to 1-week bile duct ligation (BDL) rats inhibits established cholangiocyte proliferation and ductal secretion? (ii) Is gastrin inhibition of cholangiocyte proliferation and secretion of BDL rats associated with enhanced apoptosis? (iii) Are gastrin's effects on cholangiocyte function associated with increased expression of protein kinase C (PKC) isoforms; and (iv) Is gastrin stimulation of cholangiocyte apoptosis regulated by the Ca2+ -dependent PKC pathway? Methods: Seven days after BDL, rats were treated with gastrin by minipumps for 14 days. Cholangiocyte proliferation was assessed by measurement of the number of PCNA and CK-19 positive cholangiocytes in sections, and PCNA expression in cholangiocytes. Ductal secretion was determined by measurement of secretin-induced cAMP levels and choleresis. Apoptosis was evaluated by TUNEL analysis in sections and annexin-V staining in cholangiocytes. The expression of PKC isoforms was determined by immunoblots. Results: Gastrin inhibits established cholangiocyte proliferation and enhanced secretin-stimulated ductal secretion of BDL rats. Gastrin's effects on cholangiocyte function were associated with enhanced apoptosis and increased expression of PKC alpha, and beta I and II. Gastrin increases in cholangiocyte apoptosis were blocked by BAPTA/AM and H7. Summary/conclusion: Gastrin inhibits cholangiocyte proliferation and secretin-induced ductal secretion in BDL rats by increasing apoptosis through a PKC-mediated mechanism. [source] Rapamycin inhibits cholangiocyte regeneration by blocking interleukin-6,induced activation of signal transducer and activator of transcription 3 after liver transplantationLIVER TRANSPLANTATION, Issue 2 2010Li-Ping Chen Cholangiocyte proliferation is necessary for biliary recovery from cold ischemia and reperfusion injury (CIRI), but there are few studies on its intracellular mechanism. In this process, the role of rapamycin, a new immunosuppressant used in liver transplantation, is still unknown. In order to determine whether rapamycin can depress cholangiocyte regeneration by inhibiting signal transducer and activator of transcription 3 (STAT3) activation, rapamycin (0.05 mg/kg) was administered to rats for 3 days before orthotopic liver transplantation. The results indicated that cholangiocytes responded to extended cold preservation (12 hours) with severe bile duct injures, marked activation of the interleukin-6 (IL-6)/STAT3 signal pathway, and increased expression of cyclin D1 until 7 days after transplantation, and this was followed by compensatory cholangiocyte regeneration. However, rapamycin treatment inhibited STAT3 activation and resulted in decreased cholangiocyte proliferation and delayed biliary recovery after liver transplantation. On the other hand, rapamycin showed no effect on the expression of IL-6. We conclude that the IL-6/STAT3 signal pathway is involved in initiating cholangiocytes to regenerate and repair CIRI. Rapamycin represses cholangiocyte regeneration by inhibiting STAT3 activation, which might have a negative effect on the healing and recovery of bile ducts in grafts with extended cold preservation. Insights gained from this study will be helpful in designing therapy using rapamycin in clinical patients after liver transplantation. Liver Transpl, 2010. © 2010 AASLD. [source] Timing and sequence of differentiation of embryonic rat hepatocytes along the biliary epithelial lineageHEPATOLOGY, Issue 3 2003Robbert G. E. Notenboom To study the differentiation of hepatocytes along the biliary epithelial lineage in vivo, embryonic day 14 (E14) rat hepatocytes were isolated by differential centrifugation and transplanted as single-cell suspensions into the spleen of adult syngeneic rats. Hepatocytes and cholangiocytes were identified and their maturation characterized by the level of expression of ,-fetoprotein (AFP), glutamate dehydrogenase (GDH), and carbamoyl phosphate synthetase I (CPS); annexin IV, annexin V, cytokeratin 19 (CK-19), and cystic fibrosis transmembrane conductance regulator (CFTR); and electron microscopy. By correlating morphologic changes with the timing in the expression of these markers, we show that the organization of the transplanted E14 hepatocytes into lobular structures is accompanied by the formation and maturation of bile ducts around these developing lobules. Morphologic differentiation of the emerging bile ducts was accompanied by a gradual loss of hepatocyte markers and a gradual acquisition of cholangiocyte markers, with markers identifying a large-cholangiocyte phenotype appearing latest. Once fully differentiated, the intrasplenic liver lobules developed cholestatic features. The accompanying proliferation of bile ducts was due to cholangiocyte proliferation, but ductular transformation of hepatocytes was also observed. In conclusion, (1) bile duct formation at the interface between hepatocytes and connective tissue is an inherent component of liver development and (2) the susceptibility of developing hepatocytes to bile duct-inducing signals is highest in the fetal liver but that (3) this capacity is not irreversibly lost in otherwise mature hepatocytes. [source] Lack of evidence that bone marrow cells contribute to cholangiocyte repopulation during experimental cholestatic ductal hyperplasiaLIVER INTERNATIONAL, Issue 4 2006Yuki Moritoki Abstract: Background: Ductopenia is observed in end-stage human cholestatic diseases. The limited capability of cholangiocytes for proliferation is suggested to be the principal reason. Recently, bone marrow cells (BMCs) have been reported to behave as hepatic stem cells; however, their capability to differentiate into cholangiocytes in cholestasis remains unclear. Methods: Normal mice were lethally irradiated to suppress the proliferation of self-BMCs; thereafter, the BMCs from enhanced green fluorescent protein (EGFP)-transgenic mice were transferred to recipients. Chronic cholestasis was induced by 0.1%,-naphtylisothiocyanate (ANIT) feeding. The proliferation of cholangiocytes and oval cells was assessed morphologically and immunohistchemically (cytokeratin-7 (CK-7), A6). Proliferative activity (proliferating cell nuclear antigen (PCNA) protein expression), hepatic growth factor (HGF) receptor (c-Met), stem cell factor receptor (c-kit), Notch2 and Hes1 expression were also evaluated. Results: Marked cholangiocyte proliferation was observed in ANIT-fed mice. However, no EGFP/CK-7 double positive cells were identified in any of the liver specimens after BMCs transfer (Tx). In hepatic parenchyma, there were scattered EGFP-positive cells, although none of them were positive for CK-7. Conclusions: In spite of the significant ductular proliferations after ANIT feeding, no EGFP-positive cholangiocytes were confirmed by any other means in this chronic cholestasis model. Thus, different from hepatocytes, BMCs Tx seems not to contribute to the differentiation of cholangiocytes. Future studies are feasible to clarify the origin of proliferative cholangiocytes observed in this chronic cholestatic ductular hyperplasia model. [source] Gastrin reverses established cholangiocyte proliferation and enhanced secretin-stimulated ductal secretion of BDL rats by activation of apoptosis through increased expression of Ca2+ -dependent PKC isoformsLIVER INTERNATIONAL, Issue 2 2003Shannon Glaser Abstract: We posed these questions: (i) Does administration of gastrin to 1-week bile duct ligation (BDL) rats inhibits established cholangiocyte proliferation and ductal secretion? (ii) Is gastrin inhibition of cholangiocyte proliferation and secretion of BDL rats associated with enhanced apoptosis? (iii) Are gastrin's effects on cholangiocyte function associated with increased expression of protein kinase C (PKC) isoforms; and (iv) Is gastrin stimulation of cholangiocyte apoptosis regulated by the Ca2+ -dependent PKC pathway? Methods: Seven days after BDL, rats were treated with gastrin by minipumps for 14 days. Cholangiocyte proliferation was assessed by measurement of the number of PCNA and CK-19 positive cholangiocytes in sections, and PCNA expression in cholangiocytes. Ductal secretion was determined by measurement of secretin-induced cAMP levels and choleresis. Apoptosis was evaluated by TUNEL analysis in sections and annexin-V staining in cholangiocytes. The expression of PKC isoforms was determined by immunoblots. Results: Gastrin inhibits established cholangiocyte proliferation and enhanced secretin-stimulated ductal secretion of BDL rats. Gastrin's effects on cholangiocyte function were associated with enhanced apoptosis and increased expression of PKC alpha, and beta I and II. Gastrin increases in cholangiocyte apoptosis were blocked by BAPTA/AM and H7. Summary/conclusion: Gastrin inhibits cholangiocyte proliferation and secretin-induced ductal secretion in BDL rats by increasing apoptosis through a PKC-mediated mechanism. [source] Regulation of cholangiocyte proliferationLIVER INTERNATIONAL, Issue 2 2001Gene LeSage Abstract: Intrahepatic bile duct epithelial cells (i.e., cholangiocytes) are the target cells of chronic cholestatic liver diseases (i.e., cholangiopathies), which makes these cells of great interest to clinical hepatologists. This review will focus on "typical" cholangiocyte proliferation, whereas "atypical" (extension of cholangiocyte proliferation into parenchyma), and premalignant "oval" cell proliferation are reviewed elsewhere. The bile duct ligated (BDL) rat model, where most of the known mechanisms of cholangiocyte proliferation have been illustrated, was the first and remains the prototype animal model for "typical" cholangiocyte proliferation. Following a short overview of cholangiocyte functions, we briefly discuss the: (i) in vivo models [i.e., BDL (Fig. 1 and 4), chronic ,-naphthylisothiocyanate (ANIT) or bile acid feeding (Fig. 2), acute carbon tetrachloride (CCl4) feeding and partial hepatectomy; and (ii) in vitro experimental tools [e.g., purified cholangiocytes and isolated intrahepatic bile duct units (IBDU)] that are key to the understanding of the mechanisms of "typical" cholangiocyte growth. In the second part of the review, we discuss a number of potential factors or conditions [e.g., gastrointestinal hormones, nerves, estrogens, blood supply, and growth factors] as well as the intracellular mechanisms [e.g., adenosine 3,,5,-monophosphate (cAMP), and protein kinase C (PKC)] that may regulate "typical" cholangiocyte hyperplasia. Figure 1. Measurement of the number of intrahepatic bile ducts by histochemistry for ,-GT[a specific cholangiocyte marker (1, 3, 27)] in liver sections from normal rats [left] and rats that (immediately following bile duct ligation (BDL)) were infused by osmotic minipumps with 0.2% bovine serum albumin (BSA, control) [middle] or gastrin (2.5 nmol/kg/h) in 0.2% BSA [right] for 1 week. Following BDL [middle], there was a marked increase in the number of ducts as compared to normal rats [left]. Chronic gastrin infusion [right] markedly decreased the number of intrahepatic bile ducts as compared to BSA-treated BDL rats [middle]. Orig. magn., ×125. Reproduced with permission from reference (17). Figure 4. In situ immunohistochemistry for CK-19 [a cholangiocyte-specific marker (3)] in frozen liver sections n=6) from BDL [a] and BDL+vagotomy [b] rats. Note that vagotomy induced a marked decrease in the number of ducts as compared with BDL control rats. Orig. magn., ×125. Reproduced with permission from reference (11). Figure 2. In situ immunohistochemistry for cellular nuclear antigen (PCNA) in liver sections from normal rats [left] and normal rats fed 1% TC [middle] or 1% TLC [right] for 1 week. Chronic feeding of TC [middle] and TLC [right] induced a significant increase in the number of PCNA-positive cholangiocytes as compared with liver sections from normal rats [left]. Reproduced with permission from reference (7). [source] Rapamycin inhibits cholangiocyte regeneration by blocking interleukin-6,induced activation of signal transducer and activator of transcription 3 after liver transplantationLIVER TRANSPLANTATION, Issue 2 2010Li-Ping Chen Cholangiocyte proliferation is necessary for biliary recovery from cold ischemia and reperfusion injury (CIRI), but there are few studies on its intracellular mechanism. In this process, the role of rapamycin, a new immunosuppressant used in liver transplantation, is still unknown. In order to determine whether rapamycin can depress cholangiocyte regeneration by inhibiting signal transducer and activator of transcription 3 (STAT3) activation, rapamycin (0.05 mg/kg) was administered to rats for 3 days before orthotopic liver transplantation. The results indicated that cholangiocytes responded to extended cold preservation (12 hours) with severe bile duct injures, marked activation of the interleukin-6 (IL-6)/STAT3 signal pathway, and increased expression of cyclin D1 until 7 days after transplantation, and this was followed by compensatory cholangiocyte regeneration. However, rapamycin treatment inhibited STAT3 activation and resulted in decreased cholangiocyte proliferation and delayed biliary recovery after liver transplantation. On the other hand, rapamycin showed no effect on the expression of IL-6. We conclude that the IL-6/STAT3 signal pathway is involved in initiating cholangiocytes to regenerate and repair CIRI. Rapamycin represses cholangiocyte regeneration by inhibiting STAT3 activation, which might have a negative effect on the healing and recovery of bile ducts in grafts with extended cold preservation. Insights gained from this study will be helpful in designing therapy using rapamycin in clinical patients after liver transplantation. Liver Transpl, 2010. © 2010 AASLD. [source] |