| |||
Cholangiocarcinoma Cell Line (cholangiocarcinoma + cell_line)
Selected AbstractsCOX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cellsHEPATOLOGY, Issue 3 2002Ugochukwu C. Nzeako Fas expression has been shown to negatively regulate the progression of cholangiocarcinoma cells in xenografts. However, many human cholangiocarcinomas express Fas, suggesting these cancers have developed mechanisms to inhibit Fas-mediated apoptosis. Cyclooxygenase-2 (COX-2), which generates prostanoids, is expressed by many cholangiocarcinomas. Therefore, our aim was to determine whether COX-2 expression inhibits death receptor,mediated apoptosis in KMBC cells, a cholangiocarcinoma cell line. These cells express messenger RNA for the death receptors Fas, tumor necrosis factor receptor 1 (TNF-R1), death receptor 4 (DR4), and DR5. Agonists for these death receptors, CH-11, TNF-,, and TRAIL all induced apoptosis. However, COX-2, whether induced by proinflammatory cytokines or transient transfection, only significantly inhibited Fas-mediated apoptosis. The COX-2 inhibitor NS-398 restored Fas-mediated apoptosis in COX-2 transfected cells. Prostaglandin E2 reduced apoptosis and mitochondrial depolarization after treatment with the Fas agonist CH-11. Of a variety of antiapoptotic proteins examined, COX-2/prostaglandin E2 only increased expression of Mcl-1, an antiapoptotic member of the Bcl-2 family. In conclusion, these data suggest that prostanoid generation by COX-2 specifically inhibits Fas-mediated apoptosis, likely by up-regulating Mcl-1 expression. Pharmacologic inhibition of COX-2 may be useful in augmenting Fas-mediated apoptosis of cholangiocarcinoma cells. [source] Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasias and associated "intestinal-type" biliary cancer chemically induced in rat liverHEPATOLOGY, Issue 6 2000Guan-Hua Lai Recently, we observed that Met, the receptor for hepatocyte growth factor/scatter factor (HGF/SF), is overexpressed in epithelial cells of both early-appearing intestinal metaplastic glands in precancerous hepatic cholangiofibrotic tissue and neoplastic glands in later developed intestinal-type of cholangiocarcinoma originated from the furan rat model of cholangiocarcinogenesis when compared with normal and hyperplastic intrahepatic biliary epithelia. We now show that HGF/SF is also aberrantly expressed in a manner closely paralleling that of its receptor in the neoplastic epithelial cells of furan-induced rat cholangiocarcinomas and in a majority of metaplastic epithelial cells within earlier formed precancerous hepatic cholangiofibrotic tissue. Using in situ hybridization and reverse transcription-polymerase chain reaction (RT-PCR), we further showed specific expression of HGF/SF messenger RNA (mRNA) in a novel rat cholangiocarcinoma epithelial cell line overexpressing Met. This cholangiocarcinoma cell line, termed C611B, was established from tumorigenic cells isolated from a furan-induced transplantable tumor. Moreover, we detected by in situ hybridization strong expression of HGF/SF mRNA transcripts in the cancerous epithelial glands of cholangiocarcinoma developed in recipient rats after in vivo cell transplantation of C611B cells. In contrast, mRNA transcripts and protein immunoreactivity for this cytokine were not detected in hepatocytes and biliary epithelial cells in adult normal rat liver nor in rat hyperplastic intrahepatic biliary epithelium. Our results clearly show that HGF/SF becomes aberrantly expressed in cholangiocarcinoma epithelium and in putative precancerous intestinal metaplastic epithelium induced in the liver of furan-treated rats. [source] Transforming Growth Factor-, Induces the Differentiation of Sarcomatoid Cholangiocarcinoma CellsCANCER SCIENCE, Issue 2 2000Munechika Enjoji A sarcomatoid cholangiocarcinoma cell line, ETK-1, was established from a patient. Phenotypically, the cells corresponded to immature biliary epithelial cells. Because a small number of ETK-1 cells appeared to differentiate spontaneously along a biliary epithelial lineage in continuous culture, we examined the factors that initiate and/or promote the differentiation of the cells. Transforming growth factor-, (TGF,) induced significant changes in ETK-1 cells. After stimulation with the factor, ETK-1 cells displayed morphologic transformation at a much higher frequency, with the appearance of many large cells with intracytoplasmic vacuoles, and the production of mucinous substances. These morphologically transformed cells were phenotypically similar to welldifferentiated adenocarcinoma cells. The expression pattern of integrins after TGF, treatment also supported the maturation of the ETK-1 cells. The antibody against the receptor of TGF, inhibited these changes by TGF,. Moreover, the proliferation rate of ETK-1 cells was suppressed by TGF,. Our data suggest that TGF, can act as a differentiation factor along a biliary epithelial lineage. [source] Akt expression may predict favorable prognosis in cholangiocarcinomaJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 11 2006Milind M Javle Abstract Background:, Overexpression of signaling proteins including epidermal growth factor receptor (EGFR), Akt, mitogen activated protein kinase (MAPK) and cyclooxygenase-2 (COX-2) occurs in cholangiocarcinoma cell lines. However, the prognostic value of these markers is unknown. No prior study correlated the expression of these signaling proteins with clinical outcome. Further, co-expression of these proteins has not been reported. Co-expression may reflect cross-talk between signaling pathways. The aim of this clinicopathological study was to investigate the overexpression and co-expression of EGFR and related signaling proteins in cholangiocarcinoma and explore their relationship to clinical outcome. Methods:, Twenty-four consecutive cases of cholangiocarcinoma treated from 1996 to 2002 at Roswell Park Cancer Institute were included. Immunohistochemical staining of paraffin-embedded tissue sections was performed using antibodies against Akt, p-Akt, MAPK, p-MAPK, COX-2, EGFR and p-EGFR. Two pathologists independently scored the protein expression. Results:, Cyclooxygenase-2, Akt, and p-MAPK were commonly expressed in biliary cancers (100%, 96% and 87% of malignant cells, respectively). EGFR (60%) and p-EGFR (22%) overexpression was also detected. There was a significant association between EGFR and p-EGFR (P = 0.027) and between Akt and p-Akt (P = 0.017) expression in tumor tissue. A noteworthy association was shown between MAPK and p-Akt (P = 0.054). Multivariate analysis using the Cox proportional hazard model identified the use of chemotherapy (hazard ratio [HR] = 0.039, P = 0.0002), radiation (HR = 0.176, P = 0.0441) and Akt expression (HR = 0.139, P = 0.006) as the best predictors of overall prognosis. Conclusion:, Epidermal growth factor receptor signaling intermediates are commonly expressed in cholangiocarcinoma. Expression of Akt and use of systemic chemotherapy or radiation may correlate with improved survival. [source] |