Choanocyte Chamber (choanocyte + chamber)

Distribution by Scientific Domains


Selected Abstracts


Six major steps in animal evolution: are we derived sponge larvae?

EVOLUTION AND DEVELOPMENT, Issue 2 2008
Claus Nielsen
SUMMARY A review of the old and new literature on animal morphology/embryology and molecular studies has led me to the following scenario for the early evolution of the metazoans. The metazoan ancestor, "choanoblastaea," was a pelagic sphere consisting of choanocytes. The evolution of multicellularity enabled division of labor between cells, and an "advanced choanoblastaea" consisted of choanocytes and nonfeeding cells. Polarity became established, and an adult, sessile stage developed. Choanocytes of the upper side became arranged in a groove with the cilia pumping water along the groove. Cells overarched the groove so that a choanocyte chamber was formed, establishing the body plan of an adult sponge; the pelagic larval stage was retained but became lecithotrophic. The sponges radiated into monophyletic Silicea, Calcarea, and Homoscleromorpha. Homoscleromorph larvae show cell layers resembling true, sealed epithelia. A homoscleromorph-like larva developed an archenteron, and the sealed epithelium made extracellular digestion possible in this isolated space. This larva became sexually mature, and the adult sponge-stage was abandoned in an extreme progenesis. This eumetazoan ancestor, "gastraea," corresponds to Haeckel's gastraea. Trichoplax represents this stage, but with the blastopore spread out so that the endoderm has become the underside of the creeping animal. Another lineage developed a nervous system; this "neurogastraea" is the ancestor of the Neuralia. Cnidarians have retained this organization, whereas the Triploblastica (Ctenophora+Bilateria), have developed the mesoderm. The bilaterians developed bilaterality in a primitive form in the Acoelomorpha and in an advanced form with tubular gut and long Hox cluster in the Eubilateria (Protostomia+Deuterostomia). It is indicated that the major evolutionary steps are the result of suites of existing genes becoming co-opted into new networks that specify new structures. The evolution of the eumetazoan ancestor from a progenetic homoscleromorph larva implies that we, as well as all the other eumetazoans, are derived sponge larvae. [source]


Ultrastructure and embryonic development of a syconoid calcareous sponge

INVERTEBRATE BIOLOGY, Issue 3 2006
Dafne I. Eerkes-Medrano
Abstract. Recent molecular data suggest that the Porifera is paraphyletic (Calcarea+Silicea) and that the Calcarea is more closely related to the Metazoa than to other sponge groups, thereby implying that a sponge-like animal gave rise to other metazoans. One ramification of these data is that calcareous sponges could provide clues as to what features are shared among this ancestral metazoan and higher animals. Recent studies describing detailed morphology in the Calcarea are lacking. We have used a combination of microscopy techniques to study the fine structure of Syconcoactum Urban 1905, a cosmopolitan calcareous sponge. The sponge has a distinct polarity, consisting of a single tube with an apically opening osculum. Finger-like chambers, several hundred micrometers in length, form the sides of the tube. The inner and outer layers of the chamber wall are formed by epithelia characterized by apical,basal polarity and occluding junctions between cells. The outer layer,the pinacoderm,and atrial cavity are lined by plate-like cells (pinacocytes), and the inner choanoderm is lined by a continuous sheet of choanocytes. Incurrent openings of the sponge are formed by porocytes, tubular cells that join the pinacoderm to the choanoderm. Between these two layers lies a collagenous mesohyl that houses sclerocytes, spicules, amoeboid cells, and a progression of embryonic stages. The morphology of choanocytes and porocytes is plastic. Ostia were closed in sponges that were vigorously shaken and in sponges left in still water for over 30 min. Choanocytes, and in particular collar microvilli, varied in size and shape, depending on their location in the choanocyte chamber. Although some of the odd shapes of choanocytes and their collars can be explained by the development of large embryos first beneath and later on top of the choanocytes, the presence of many fused collar microvilli on choanocytes may reflect peculiarities of the hydrodynamics in large syconoid choanocyte chambers. The unusual formation of a hollow blastula larva and its inversion through the choanocyte epithelium are suggestive of epithelial rather than mesenchymal cell movements. These details illustrate that calcareous sponges have characteristics that allow comparison with other metazoans,one of the reasons they have long been the focus of studies of evolution and development. [source]


Embryo development of Corticium candelabrum (Demospongiae: Homosclerophorida)

INVERTEBRATE BIOLOGY, Issue 3 2007
Sonia De Caralt
Abstract. Corticium candelabrum is a homosclerophorid sponge widespread along the rocky Mediterranean sublittoral. Scanning and transmission electron microscopy were used to describe the gametes and larval development. The species is hermaphroditic. Oocytes and spermatocytes are clearly differentiated in April. Embryos develop from June to July when the larvae are released spontaneously. Spermatic cysts originate from choanocyte chambers and spermatogonia from choanocytes by choanocyte mitosis. Oocytes have a nucleolate nucleus and a cytoplasm filled with yolk granules and some lipids. Embryos are surrounded by firmly interlaced follicular cells from the parental tissue. A thin collagen layer lies below the follicular cells. The blastocoel is formed by migration of blastomeres to the morula periphery. Collagen is spread through the whole blastocoel in the embryo, but is organized in a dense layer (basal lamina) separating cells from the blastocoel in the larva. The larva is a typical cinctoblastula. The pseudostratified larval epithelium is formed by ciliated cells. The basal zone of the ciliated cells contains lipid inclusions and some yolk granules; the intermediate zone is occupied by the nucleus; and the apical zone contains abundant electron-lucent vesicles and gives rise to cilia with a single cross-striated rootlet. Numerous paracrystalline structures are contained in vacuoles within both apical and basal zones of the ciliated cells. Several slightly differentiated cell types are present in different parts of the larva. Most cells are ciliated, and show ultrastructural particularities depending on their location in the larvae (antero-lateral, intermediate, and posterior regions). A few smaller cells are non-ciliated. Several features of the C. candelabrum larva seem to support the previously proposed paraphyletic position of homoscleromorphs with respect to the other demosponges. [source]


Ultrastructure and embryonic development of a syconoid calcareous sponge

INVERTEBRATE BIOLOGY, Issue 3 2006
Dafne I. Eerkes-Medrano
Abstract. Recent molecular data suggest that the Porifera is paraphyletic (Calcarea+Silicea) and that the Calcarea is more closely related to the Metazoa than to other sponge groups, thereby implying that a sponge-like animal gave rise to other metazoans. One ramification of these data is that calcareous sponges could provide clues as to what features are shared among this ancestral metazoan and higher animals. Recent studies describing detailed morphology in the Calcarea are lacking. We have used a combination of microscopy techniques to study the fine structure of Syconcoactum Urban 1905, a cosmopolitan calcareous sponge. The sponge has a distinct polarity, consisting of a single tube with an apically opening osculum. Finger-like chambers, several hundred micrometers in length, form the sides of the tube. The inner and outer layers of the chamber wall are formed by epithelia characterized by apical,basal polarity and occluding junctions between cells. The outer layer,the pinacoderm,and atrial cavity are lined by plate-like cells (pinacocytes), and the inner choanoderm is lined by a continuous sheet of choanocytes. Incurrent openings of the sponge are formed by porocytes, tubular cells that join the pinacoderm to the choanoderm. Between these two layers lies a collagenous mesohyl that houses sclerocytes, spicules, amoeboid cells, and a progression of embryonic stages. The morphology of choanocytes and porocytes is plastic. Ostia were closed in sponges that were vigorously shaken and in sponges left in still water for over 30 min. Choanocytes, and in particular collar microvilli, varied in size and shape, depending on their location in the choanocyte chamber. Although some of the odd shapes of choanocytes and their collars can be explained by the development of large embryos first beneath and later on top of the choanocytes, the presence of many fused collar microvilli on choanocytes may reflect peculiarities of the hydrodynamics in large syconoid choanocyte chambers. The unusual formation of a hollow blastula larva and its inversion through the choanocyte epithelium are suggestive of epithelial rather than mesenchymal cell movements. These details illustrate that calcareous sponges have characteristics that allow comparison with other metazoans,one of the reasons they have long been the focus of studies of evolution and development. [source]