Chlorite

Distribution by Scientific Domains
Distribution within Earth and Environmental Science

Kinds of Chlorite

  • sodium chlorite

  • Terms modified by Chlorite

  • chlorite zone

  • Selected Abstracts


    ACIDIFIED SODIUM CHLORITE, TRISODIUM PHOSPHATE AND POPULATIONS OF SALMONELLA TYPHIMURIUM AND STAPHYLOCOCCUS AUREUS ON CHICKEN-BREAST SKIN

    JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2 2006
    HAYDAR ÖZDEM
    ABSTRACT The present study was designed to determine the individual and combined effects of acidified sodium chlorite (ASC) and trisodium phosphate (TSP) antimicrobial treatments. Chicken-skin samples inoculated with Salmonella typhimurium and Staphylococcus aureus were separately dipped into sterile tap water, 10% TSP, 0.1% ASC, 0.1% ASC followed by 10% TSP and 10% TSP followed by 0.1% ASC for 15 s at 25C ± 1. On day 0, reductions were 1.4,1.6 log for S. Typhimurium and 1.1,2.1 log for S. aureus, while they were 1.8,2.9 and 0.7,1.7 log, respectively, on day 5 of storage. Results indicated that treatment with ASC solution alone was more effective than treatment with ASC and TSP solutions combined in reducing S. aureus populations on chicken skin during the entire storage period. Similarly, treatment with TSP solution alone was more effective than treatment with ASC and TSP solutions combined in reducing S. typhimurium populations on chicken skin on days 1, 3 and 5 of storage. [source]


    Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite,phengite assemblages

    GEOLOGICAL JOURNAL, Issue 3-4 2000
    O. Vidal
    Abstract The compositional variation of phengite and chlorite pairs in rocks sampled across the metamorphic zonation of three different blueschist belts (Cycladic, Sambagawa and Schistes Lustrés) is characterized from the regional to the thin-section scale. The different sample suites show different compositional trends, but similar trends are observed at the regional and thin-section scale in the same unit. At the thin-section scale, several local chlorite,phengite equilibria involving minerals of different compositions can be identified. These observations suggest that at temperature T <,,550°C, equilibration of chlorite and phengite compositions with varying pressure and temperature is controlled by crystallization/recrystallization processes rather than by changing the composition of older grains by lattice diffusion. In some instances, the relative time of growth of the different phyllosilicate generations can be determined using microstructural criteria. The observed compositional variations are interpreted and quantified in terms of pressure (P) and temperature (T) variations using new thermodynamic solution models accounting for the Tschermak, di/trioctahedral, and pyrophyllitic substitutions. Chlorite,phengite local equilibria constrain the shape of the exhumation P,T paths of the rocks under consideration. The assemblage chlorite,phengite,paragonite,albite,quartz,H2O can be used to constrain different P,T paths for Tinos and Sambagawa blueschists. Copyright © 2000 John Wiley & Sons, Ltd. [source]


    Acidified Sodium Chlorite as an Alternative to Chlorine for Elimination of Salmonella on Alfalfa Seeds

    JOURNAL OF FOOD SCIENCE, Issue 4 2009
    C.-H. Liao
    ABSTRACT:, The health and environmental hazard associated with the use of chlorine for food processing has been documented previously. This study was conducted to determine if acidified sodium chlorite (ASC) could be used to replace calcium hypochlorite (Ca[OCl]2) for disinfection of alfalfa seeds. Contaminated seeds containing approximately 1.5 × 107 CFU/g of Salmonella were treated with ASC or Ca(OCl)2 at different concentrations and for different periods of time. Results showed that the efficacy of ASC and Ca(OCl)2 for elimination of Salmonella on contaminated seeds could be improved greatly by extending the treatment time from the traditional 15 to 45 min. Treatment of seeds with 800 ppm of ASC for 45 min reduced the number of Salmonella by 3.9 log units, approximately 1.2 log units higher than that treated with 20000 ppm of Ca(OCl)2. Treatment of seeds with a lower concentration (100 to 400 ppm) of ASC for 45 min reduced the number of Salmonella by 1.3 to 2.2 log units. Soaking alfalfa seeds in 800 ppm of ASC for 45 min did not affect seed germination. However, soaking seeds in 20000 ppm of Ca(OCl)2 for 45 min reduced seed germination by 20%. Unlike Ca(OCl)2, antimicrobial efficiency of ASC was not affected by pre-exposure to alfalfa seeds. Data presented also showed that Salmonella on newly inoculated seeds that had been stored at 4 °C for less than 7 d were more sensitive to sanitizer treatment than those on seeds that had been stored for 4 wk or longer. [source]


    Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of chlorite dismutase: a detoxifying enzyme producing molecular oxygen

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2008
    Daniël C. De Geus
    Chlorite dismutase, a homotetrameric haem-based protein, is one of the key enzymes of (per)chlorate-reducing bacteria. It is highly active (>2,kU,mg,1) in reducing the toxic compound chlorite to the innocuous chloride anion and molecular oxygen. Chlorite itself is produced as the intermediate product of (per)chlorate reduction. The chlorite dismutase gene in Azospira oryzae strain GR-1 employing degenerate primers has been identified and the active enzyme was subsequently overexpressed in Escherichia coli. Chlorite dismutase was purified, proven to be active and crystallized using sitting drops with PEG 2000 MME, KSCN and ammonium sulfate as precipitants. The crystals belonged to space group P21212 and were most likely to contain six subunits in the asymmetric unit. The refined unit-cell parameters were a = 164.46, b = 169.34, c = 60.79,Å. The crystals diffracted X-rays to 2.1,Å resolution on a synchrotron-radiation source and a three-wavelength MAD data set has been collected. Determination of the chlorite dismutase structure will provide insights into the active site of the enzyme, for which no structures are currently available. [source]


    The role of mineralogy, geochemistry and grain size in badland development in Pisticci (Basilicata, southern Italy)

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2007
    V. Summa
    Abstract Mineralogical, geochemical and grain-size composition of soil and pore-water chemistry parameters were characterized on both eroded (south-facing) and non-eroded (north-facing) clayey-silt slopes in the Basilicata region (southern Italy). Only a few grain-size parameters and clay mineralogy discriminate eroded from non-eroded substrates. Compared with the latter, the former have fractions of over 63 µm and 1,4 µm lower and fractions 4,63 µm higher. Grain-size characters of crusts did not discriminate with respect to substrate. Bulk rock mineralogy was not distinctive, but the clay mineral assemblage shows that the eroded slope is enriched in kaolinite, mixed layers (illite,smectite) and chlorite, whereas illite decreases, although overlaps are common. Chemical data enable discrimination between eroded and non-eroded slopes. pH, SAR (sodium adsorption ratio), TDS (total dissolved salts) and PS (percentage of sodium) are distinctive parameters for both eroded and non-eroded slopes. TDS increases in depth in the non-eroded slope, whereas the maximum TDS is just below the crust in the eroded one. On average, eroded substrates are higher in pH, SAR and PS than non-eroded ones. The ESP (exchangeable sodium percentage) of the eroded slope has a higher value than the non-eroded one. Crusts are less dispersive than eroded substrates, and non-eroded substrates behave as crusts. This suggests that the portion of the slope most severely exposed to weathering tends to stabilize, due to strong decreases in SAR, PS and ESP. Several diagrams reported in the literature show similarly anomalous crust samples on eroded slopes, compared with other samples coming from greater depths on eroded slopes. In the present case study, the exchangeable form of Na characterizes crusts more than the soluble form. This study describes the erosional mechanism, which involves morphological and geographic exposure and climatic elements, as well as grain size, mineralogy, chemistry and exchangeable processes of soils. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Determination of refractory organic matter in marine sediments by chemical oxidation, analytical pyrolysis and solid-state 13C nuclear magnetic resonance spectroscopy

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2008
    J. M. De La Rosa
    Summary Seeking to quantify the amount of refractory organic matter (ROM), which includes black carbon-like material (BC), in marine sediments, we have applied a two-step procedure that consists of a chemical oxidation with sodium chlorite of the demineralized sediments followed by integration of the aromatic C region in the remaining residues by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The efficacy for lignin removal was tested by analytical pyrolysis in the presence of tetramethyl ammonium hydroxide (TMAH). Riverine, estuarine and offshore marine sediment samples were collected from the southwest Atlantic coast of Spain, a site of geological and environmental interest. Measured contents of BC-like material ranged between 3.0 and 45.7% of the total organic carbon. Greater relative BC contents were found in riverine sediments close to urban areas, which show an elevated input of anthropogenic organic material. The contents of BC-like material in offshore marine sediments (5.5,6.1%) were similar to those previously reported for these kinds of samples. However, NMR and pyrolysis-GC/MS of the isolated ROM reveals that abundant refractory aliphatic organic material remains in most of the marine samples after chlorite oxidation. We suggest that this pool of aliphatic carbon may play an important role as a stable carbon pool within the global C cycle. [source]


    The mechanism of fluid infiltration in peridotites at Almklovdalen, western Norway

    GEOFLUIDS (ELECTRONIC), Issue 3 2002
    O. Kostenko
    Abstract A major Alpine-type peridotite located at Almklovdalen in the Western Gneiss Region of Norway was infiltrated by aqueous fluids at several stages during late Caledonian uplift and retrogressive metamorphism. Following peak metamorphic conditions in the garnet,peridotite stability field, the peridotite experienced pervasive fluid infiltration and retrogression in the chlorite,peridotite stability field. Subsequently, the peridotite was infiltrated locally by nonreactive fluids along fracture networks forming pipe-like structures, typically on the order of 10 m wide. Fluid migration away from the fractures into the initially impermeable peridotite matrix was facilitated by pervasive dilation of grain boundaries and the formation of intragranular hydrofractures. Microstructural observations of serpentine occupying the originally fluid-filled inclusion space indicate that the pervasively infiltrating fluid was characterized by a high dihedral angle (, > 60°) and ,curled up' into discontinuous channels and fluid inclusion arrays following the infiltration event. Re-equilibration of the fluid phase topology took place by growth and dissolution processes driven by the excess surface energy represented by the ,forcefully' introduced external fluid. Pervasive fluid introduction into the peridotite reduced local effective stresses, increased the effective grain boundary diffusion rates and caused extensive recrystallization and some grain coarsening of the infiltrated volumes. Grain boundary migration associated with this recrystallization swept off abundant intragranular fluid inclusions in the original chlorite peridotite, leading to a significant colour change of the rock. This colour change defines a relatively sharp front typically located 1,20 cm away from the fractures where the nonreactive fluids originally entered the peridotite. Our observations demonstrate how crustal rocks may be pervasively infiltrated by fluids with high dihedral angles (, > 60°) and emphasize the coupling between hydrofracturing and textural equilibration of the grain boundary networks and the fluid phase topology. [source]


    Sediment provenance of late Quaternary morainic, fluvial and loess-like deposits in the southwestern Verkhoyansk Mountains (eastern Siberia) and implications for regional palaeoenvironmental reconstructions

    GEOLOGICAL JOURNAL, Issue 5 2007
    Steffen Popp
    Abstract A provenance analysis of late Quaternary deposits from tributaries of the Aldan and Lena rivers in Central Yakutia (eastern Siberia) was carried out using analysis of heavy minerals and clay mineralogy. Cluster analysis revealed one assemblage that is characterized by relatively high proportions of amphibole, orthopyroxene and garnet as well as pedogenic clay minerals, reflecting a sediment provenance from the wide catchment area of the Lena and Aldan rivers. In contrast, the three other clusters are dominated by stable heavy minerals with varying amounts of clinopyroxene, apatite and garnet, as well as high percentages of illite and chlorite that are indicative of source rocks of the Verkhoyansk Mountains. Glacial moraines reveal the local mountain source signal that is overprinted by the Lena-Aldan signal in the oldest moraines by reworking processes. Alluvial sediments in the Verkhoyansk Foreland show a clear Lena source signal through intervals of the middle and late Pleistocene, related to a stream course closer to the mountains at that time. Loess-like cover sediments are characterized by the dominant Lena provenance with increasing proportions of local mountain sources towards the mountain valleys. Aeolian sands in an alluvial terrace section at the mountain margin covering the time between 30,ka and 10,ka BP reflect temporarily dominant inputs of aeolian materials from the Lena Plains. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite,phengite assemblages

    GEOLOGICAL JOURNAL, Issue 3-4 2000
    O. Vidal
    Abstract The compositional variation of phengite and chlorite pairs in rocks sampled across the metamorphic zonation of three different blueschist belts (Cycladic, Sambagawa and Schistes Lustrés) is characterized from the regional to the thin-section scale. The different sample suites show different compositional trends, but similar trends are observed at the regional and thin-section scale in the same unit. At the thin-section scale, several local chlorite,phengite equilibria involving minerals of different compositions can be identified. These observations suggest that at temperature T <,,550°C, equilibration of chlorite and phengite compositions with varying pressure and temperature is controlled by crystallization/recrystallization processes rather than by changing the composition of older grains by lattice diffusion. In some instances, the relative time of growth of the different phyllosilicate generations can be determined using microstructural criteria. The observed compositional variations are interpreted and quantified in terms of pressure (P) and temperature (T) variations using new thermodynamic solution models accounting for the Tschermak, di/trioctahedral, and pyrophyllitic substitutions. Chlorite,phengite local equilibria constrain the shape of the exhumation P,T paths of the rocks under consideration. The assemblage chlorite,phengite,paragonite,albite,quartz,H2O can be used to constrain different P,T paths for Tinos and Sambagawa blueschists. Copyright © 2000 John Wiley & Sons, Ltd. [source]


    Palaeomagnetic and rock-magnetic studies of Cretaceous rocks in the Gongju Basin, Korea: implication of clockwise rotation

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2002
    Seong-Jae Doh
    Summary Palaeomagnetic and rock-magnetic studies have been carried out for Cretaceous non-marine sedimentary rocks (Gongju Group) and volcanic rocks in the Gongju Basin, located along the northern boundary of the Ogcheon Belt, Korea. K,Ar age dating for the volcanic rocks was also performed. It is found that the Gongju Group was remagnetised during the tilting of the strata with the characteristic remanent magnetisation (ChRM) direction of at 30 per cent untilting of the strata with a maximum value of precision parameter (k), while the volcanic rocks are revealed to acquire primary remanence with the direction of after the tilt-correction. The K,Ar ages of the volcanic rocks range from 81.8 ± 2.4 to 73.5 ± 2.2 Ma, corresponding to the Campanian stage of the Late Cretaceous. Electron microscope observations of samples from the Gongju Group show authigenic iron-oxide minerals of various sizes distributed along the cleavage of chlorite and in the pore spaces, indicating that the strata acquired the chemical remanent magnetisation due to the formation of secondary magnetic minerals under the influence of fluids. The palaeomagnetic pole positions are at Lat./Long. = 69.6°N/224.3°E (dp= 3.5°, dm= 5.2°) calculated for the 30 per cent tilt-corrected direction of the Gongju Group and at for the volcanic rocks. Based on the results of this study, it is interpreted that the volcanic rocks acquired the primary magnetisation almost at the same time as the remagnetisation of the Gongju Group in the Late Cretaceous. Comparisons of Cretaceous palaeomagnetic poles from the Korean Peninsula with those from Eurasia implies that the Korean Peninsula underwent clockwise rotation of 21.2°± 5.3° for the middle Early Cretaceous, 12.6°± 5.4° for the late Early Cretaceous, and 7.1°± 9.8° for the Late Cretaceous with respect to Eurasia, due to the sinistral motion of the Tan-Lu Fault. [source]


    Uncatalyzed and ruthenium(III)-catalyzed reaction of acidic chlorite with methylene violet

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 7 2003
    S. B. Jonnalagadda
    The kinetics and mechanism of the uncatalyzed and Ru(III)-catalyzed oxidation of methylene violet (3-amino-7-diethylamino-5-phenyl phenazinium chloride) (MV+) by acidic chlorite is reported. With excess concentrations of other reactants, both uncatalyzed and catalyzed reactions had pseudo-first-order kinetics with respect to MV+. The uncatalyzed reaction had first-order dependence on chlorite and H+ concentrations, but the catalyzed reaction had first-order dependence on both chlorite and catalyst, and a fractional order with respect to [H+]. The rate coefficient of the uncatalyzed reaction is (5.72 ± 0.19) M,2 s,1, while the catalytic constant for the catalyzed reaction is (22.4 ± 0.3) × 103 M,1 s,1. The basic stoichiometric equation is as follows: 2MV+ + 7ClO2, + 2H+ = 2P + CH3COOH + 4ClO2 + 3Cl,, where P+ = 3-amino-7-ethylamino-5-phenyl phenazinium-10-N-oxide. Stoichiometry is dependent on the initial concentration of chlorite present. Consistent with the experimental results, pertinent mechanisms are proposed. The proposed 15-step mechanism is simulated using literature; experimental and estimated rate coefficients and the simulated plots agreed well with the experimental curves. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 294,303, 2003 [source]


    Geophysical implications of Izu,Bonin mantle wedge hydration from chemical geodynamic modeling

    ISLAND ARC, Issue 1 2010
    Laura B. Hebert
    Abstract Using two-dimensional dynamic models of the Northern Izu,Bonin (NIB) subduction zone, we show that a particular localized low-viscosity (,LV = 3.3 × 1019 , 4.0 × 1020 Pa s), low-density (,, , ,10 kg/m3 relative to ambient mantle) geometry within the wedge is required to match surface observations of topography, gravity, and geoid anomalies. The hydration structure resulting in this low-viscosity, low-density geometry develops due to fluid release into the wedge within a depth interval from 150 to 350 km and is consistent with results from coupled geochemical and geodynamic modeling of the NIB subduction system and from previous uncoupled models of the wedge beneath the Japan arcs. The source of the fluids can be either subducting lithospheric serpentinite or stable hydrous phases in the wedge such as serpentine or chlorite. On the basis of this modeling, predictions can be made as to the specific low-viscosity geometries associated with geophysical surface observables for other subduction zones based on regional subduction parameters such as subducting slab age. [source]


    Anisotropy of magnetic susceptibility and petrofabric studies in the Garhwal synform, Outer Lesser Himalaya: Evidence of pop-up klippen

    ISLAND ARC, Issue 3 2009
    Upasana Devrani
    Abstract Geological field, petrographic, and anisotropy of magnetic susceptibility studies help in understanding the evolutionary history of the Garhwal synform that lies in the western Outer Lesser Himalaya. Orientations of the magnetic susceptibility axes reveal large variations at short distances as a result of superimposed deformation, and predominant stress conditions favorable for normal faulting. Rocks forming the outer limbs of the Garhwal Synform are metamorphosed up to the lower greenschist facies. The metamorphic grade increases to chlorite zone in the inner limb and the core is characterized by chlorite,biotite to garnet zones. The different grades of metamorphism are separated by thrusts and the structure is described as a pop-up klippen. [source]


    Subdivision of the Sanbagawa pumpellyite,actinolite facies region in central Shikoku, southwest Japan

    ISLAND ARC, Issue 3 2008
    Masumi Sakaguchi
    Abstract The mineral assemblages of the pumpellyite,actinolite facies such as pumpellyite + actinolite + epidote + chlorite or actinolite + epidote + hematite + chlorite occur in the Sanbagawa low-grade metamorphic region, central Shikoku, southwest Japan. Chemical compositions of these minerals from the eight newly studied areas were analyzed in order to evaluate the areal extent and thermal structure of the region. In the buffered assemblage of pumpellyite + actinolite + epidote + chlorite, the Fe3+/(Fe3+ + Al) values of epidote decrease slightly with decreasing Fe2+/(Fe2+ + Mg) values for chlorite. The changes in these values show a general correlation with temperature. The presence of this relationship implies that the Fe3+/(Fe3+ + Al) values of epidote can be used to divide the Sanbagawa low-grade metamorphic region into low-, medium- and high-grade subzones. The areal distribution of these subzones indicates that: (i) the temperature seems to decrease in the same sense as envisaged by the zonal mapping of the higher-grade pelitic schists; and (ii) there is no significant gap of metamorphic conditions through the boundary between the two structural units (Besshi and Oboke units). It follows that the Sanbagawa low-grade metamorphic region decreases in temperature going up the structural section, and tectonic discontinuities have not affected the thermal structure. [source]


    Sandstone diagenesis of the Lower Cretaceous Sindong Group, Gyeongsang Basin, southeastern Korea: Implications for compositional and paleoenvironmental controls

    ISLAND ARC, Issue 1 2008
    Yong Il Lee
    Abstract The Gyeongsang Basin is a non-marine sedimentary basin formed by extensional tectonism during the Early Cretaceous in the southeastern Korean Peninsula. The sediment fill starts with the Sindong Group distributed along the western margin of the basin. It consists of three lithostratigraphic units: the Nakdong (alluvial fan), Hasandong (fluvial) and Jinju (lacustrine) formations with decreasing age. Sindong Group sandstones are classified into four petrofacies (PF) based on their detrital composition: PF-A consists of the lower Nakdong Formation with average Q73F12R15; PF-B the upper Nakdong and lower Hasandong formations with Q66F15R18; PF-C the middle Hasandong to middle Jinju formations with Q49F29R22; and PF-D the upper Jinju Formation with Q26F34R41. The variations of detrital composition influenced the diagenetic mineral assemblage in the Sindong Group sandstones. Illite and dolomite/ankerite are important diagenetic minerals in PF-A and PF-B, whereas calcite and chlorite are dominant diagenetic minerals in PF-C and PF-D. Most of the diagenetic minerals can be divided into early and late diagenetic stages of formation. Early diagenetic calcites occur mostly in PF-C, probably controlled by arid to semiarid climatic conditions during the sandstone deposition, no early calcite being found in PF-A and PF-B. Late-stage calcites are present in all Sindong Group sandstones. The calcium ions may have been derived from shale diagenesis and dissolution of early stage calcites in the Hasandong and Jinju sandstones. Illite, the only diagenetic clay mineral in PF-A and lower PF-B, is inferred to be a product of kaolinite transformation during deep burial, and the former presence of kaolinite is inferred from the humid paleoclimatic conditions during the deposition of the Nakdong Formation. Chlorites in PF-C and PF-D are interpreted to be the products of transformation of smectitic clay or of precipitation from alkaline pore water under arid to semiarid climatic conditions. The occurrence of late-stage diagenetic minerals largely depended on the distribution of early diagenetic minerals, which was controlled initially by the sediment composition and paleoclimate. [source]


    Talc-phengite-albite assemblage in piemontite-quartz schist of the Sanbagawa metamorphic belt, central Shikoku, Japan

    ISLAND ARC, Issue 1 2000
    J. Izadyar
    Abstract The talc (Tlc) + phengite (Phn) + albite (Ab) assemblage is newly confirmed in MnOtotal -rich (1.65 wt% in average) piemontite-quartz schists from the intermediate- and high-grade part of the Sanbagawa belt, central Shikoku, Japan. Talc is in direct contact with Phn, Ab and chlorite (Chl) with sharp boundaries, suggesting that these four phases mutually coexist. Other primary constituents of the Tlc-bearing piemontite-quartz schist are spessartine, braunite, hematite (Ht), crossite/barroisite and dolomite. Phlogopite (Phl) rarely occurs as a later stage mineral developing along the rim of Phn. The studied piemontite-quartz schist has mg# (= Mg/(Mg + Fe2+)) ~ 1.0, because of its high oxidation state. Schreinemakers' analysis in the KNMASH system and the mineral assemblage in the Sanbagawa belt propose a possible petrogenetic grid, in which the Tlc,Phn assemblage is stable in a P-T field surrounded by the following reactions: lower-pressure limit by Chl + Phl + quartz (Qtz) = Phn + Tlc + H2O as proposed by previous workers; higher-pressure limit by glaucophane + Qtz = Tlc + Ab + H2O; and higher-temperature limit by Tlc + Phn + Ab = Phl + paragonite + Qtz + H2O. Thermodynamic calculation based on the database of Holland & Powell (1998), however, suggests that the Tlc,Phn stability field defined by these reactions is unrealistically limited around 580,600 °C at 11.6,12.0 (± 0.7) kbar. Schreinemakers' analysis in the KNMA-Fe3+ -SH system and the observed mineral assemblage predict that Chl + crossite = Tlc + Ab + Ht + H2O is a preferable Tlc-forming reaction in the intermediate-grade part of the Sanbagawa belt and that excess Ab + hematite narrows the stability field of the Tlc,Phn assemblage. [source]


    Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography

    JOURNAL OF CHEMOMETRICS, Issue 2 2008
    Tomislav Bolan
    Abstract The reliability of predicted separations in ion chromatography depends mainly on the accuracy of retention predictions. Any model able to improve this accuracy will yield predicted optimal separations closer to the reality. In this work artificial neural networks were used for retention modeling of void peak, fluoride, chlorite, chloride, chlorate, nitrate and sulfate. In order to increase performance characteristics of the developed model, different training methodologies were applied and discussed. Furthermore, the number of neurons in hidden layer, activation function and number of experimental data used for building the model were optimized in terms of decreasing the experimental effort without disruption of performance characteristics. This resulted in the superior predictive ability of developed retention model (average of relative error is 0.4533%). Copyright © 2008 John Wiley & Sons, Ltd. [source]


    ACIDIFIED SODIUM CHLORITE, TRISODIUM PHOSPHATE AND POPULATIONS OF SALMONELLA TYPHIMURIUM AND STAPHYLOCOCCUS AUREUS ON CHICKEN-BREAST SKIN

    JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2 2006
    HAYDAR ÖZDEM
    ABSTRACT The present study was designed to determine the individual and combined effects of acidified sodium chlorite (ASC) and trisodium phosphate (TSP) antimicrobial treatments. Chicken-skin samples inoculated with Salmonella typhimurium and Staphylococcus aureus were separately dipped into sterile tap water, 10% TSP, 0.1% ASC, 0.1% ASC followed by 10% TSP and 10% TSP followed by 0.1% ASC for 15 s at 25C ± 1. On day 0, reductions were 1.4,1.6 log for S. Typhimurium and 1.1,2.1 log for S. aureus, while they were 1.8,2.9 and 0.7,1.7 log, respectively, on day 5 of storage. Results indicated that treatment with ASC solution alone was more effective than treatment with ASC and TSP solutions combined in reducing S. aureus populations on chicken skin during the entire storage period. Similarly, treatment with TSP solution alone was more effective than treatment with ASC and TSP solutions combined in reducing S. typhimurium populations on chicken skin on days 1, 3 and 5 of storage. [source]


    Acidified Sodium Chlorite as an Alternative to Chlorine for Elimination of Salmonella on Alfalfa Seeds

    JOURNAL OF FOOD SCIENCE, Issue 4 2009
    C.-H. Liao
    ABSTRACT:, The health and environmental hazard associated with the use of chlorine for food processing has been documented previously. This study was conducted to determine if acidified sodium chlorite (ASC) could be used to replace calcium hypochlorite (Ca[OCl]2) for disinfection of alfalfa seeds. Contaminated seeds containing approximately 1.5 × 107 CFU/g of Salmonella were treated with ASC or Ca(OCl)2 at different concentrations and for different periods of time. Results showed that the efficacy of ASC and Ca(OCl)2 for elimination of Salmonella on contaminated seeds could be improved greatly by extending the treatment time from the traditional 15 to 45 min. Treatment of seeds with 800 ppm of ASC for 45 min reduced the number of Salmonella by 3.9 log units, approximately 1.2 log units higher than that treated with 20000 ppm of Ca(OCl)2. Treatment of seeds with a lower concentration (100 to 400 ppm) of ASC for 45 min reduced the number of Salmonella by 1.3 to 2.2 log units. Soaking alfalfa seeds in 800 ppm of ASC for 45 min did not affect seed germination. However, soaking seeds in 20000 ppm of Ca(OCl)2 for 45 min reduced seed germination by 20%. Unlike Ca(OCl)2, antimicrobial efficiency of ASC was not affected by pre-exposure to alfalfa seeds. Data presented also showed that Salmonella on newly inoculated seeds that had been stored at 4 °C for less than 7 d were more sensitive to sanitizer treatment than those on seeds that had been stored for 4 wk or longer. [source]


    Sanitation Procedure Affects Biochemical and Nutritional Changes of Shredded Carrots

    JOURNAL OF FOOD SCIENCE, Issue 2 2007
    Saúl Ruiz-Cruz
    ABSTRACT:, Fresh-cut vegetables are considered convenient but with less nutritional quality compared to raw natural produce. Carrots are highly appreciated because of their carotene and antioxidant nutrients, but processing requires an appropriate sanitation procedure that ensures microbiological safety to consumers. The effect of the sanitation processing on the nutritional composition of shredded carrots was studied. Treatments tested were tap water, 200 ppm sodium hypochlorite (Cl), 40 ppm peroxyacetic acid (PA), and 100, 250, and 500 ppm acidified sodium chlorite (ASC). Measured parameters were oxygen radical absorbing capacity (ORAC), total phenolics and carotenoids, sugars, and phenylalanine ammonia lyase (PAL) and peroxidase (POD) activity. Shredded carrots sanitized with ASC retained higher levels of sugars, carotene, and antioxidant capacity. ASC also delayed the PAL and POD activity. These results show the importance of evaluating nutritional parameters during processing stages, since minimal processing does not necessarily imply loss of nutritional value. Furthermore, the availability of fresh-cut produce may increase the intake of nutrients, with a positive effect on health. [source]


    P,T,X controls on phase stability and composition in LTMP metabasite rocks , a thermodynamic evaluation

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2010
    G. PHILLIPS
    Abstract The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P,T and P,X phase diagrams. This approach allowed P,T conditions of ,4.0 kbar and ,260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous,Triassic New England Orogen. P,T and P,X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3 -saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO-rich (10.30 wt%) rocks. With intermediate Fe2O3 (,3.50 wt%) and CaO (,8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P,T conditions. For Fe2O3 -saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher- P stability fields where albite is absent, Fe2+ -Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages. [source]


    Cold subduction and the formation of lawsonite eclogite , constraints from prograde evolution of eclogitized pillow lava from Corsica

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2010
    E. J. K. RAVNA
    Abstract A new discovery of lawsonite eclogite is presented from the Lancône glaucophanites within the Schistes Lustrés nappe at Défilé du Lancône in Alpine Corsica. The fine-grained eclogitized pillow lava and inter-pillow matrix are extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive pillows and weakly foliated inter-pillow matrix consist of zoned idiomorphic Mg-poor (<0.8 wt% MgO) garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in the massive pillows are Mn rich, and show a regular prograde growth-type zoning with a Mn-rich core. In the inter-pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several smaller crystallites. Matrix omphacite in both rock types is zoned with a rimward increase in XJd, locally with cores of relict augite. Numerous inclusions of clinopyroxene, lawsonite, chlorite and titanite are encapsulated within garnet in both rock types, and albite, quartz and hornblende are also found included in garnet from the inter-pillow matrix. Inclusions of clinopyroxene commonly have augitic cores and omphacitic rims. The inter-pillow matrix contains cross-cutting omphacite-rich veinlets with zoned omphacite, Si-rich phengite (Si = 3.54 apfu), ferroglaucophane, actinolite and hematite. These veinlets are seen fracturing idiomorphic garnet, apparently without any secondary effects. Pseudosections of matrix compositions for the massive pillows, the inter-pillow matrix and the cross-cutting veinlets indicate similar P,T conditions with maximum pressures of 1.9,2.6 GPa at temperatures of 335,420 °C. The inclusion suite found in garnet from the inter-pillow matrix apparently formed at pressures below 0.6,0.7 GPa. Retrogression during initial decompression of the studied rocks is only very local. Late veinlets of albite + glaucophane, without breakdown of lawsonite, indicate that the rocks remained in a cold environment during exhumation, resulting in a hairpin-shaped P,T path. [source]


    Fluid flow and Al transport during quartz-kyanite vein formation, Unst, Shetland Islands, Scotland

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2010
    C. E. BUCHOLZ
    Abstract Quartz-kyanite veins, adjacent alteration selvages and surrounding ,precursor' wall rocks in the Dalradian Saxa Vord Pelite of Unst in the Shetland Islands (Scotland) were investigated to constrain the geochemical alteration and mobility of Al associated with channelized metamorphic fluid infiltration during the Caledonian Orogeny. Thirty-eight samples of veins, selvages and precursors were collected, examined using the petrographic microscope and electron microprobe, and geochemically analysed. With increasing grade, typical precursor mineral assemblages include, but are not limited to, chlorite+chloritoid, chlorite+chloritoid+kyanite, chlorite+chloritoid+staurolite and garnet+staurolite+kyanite+chloritoid. These assemblages coexist with quartz, white mica (muscovite, paragonite, margarite), and Fe-Ti oxides. The mineral assemblage of the selvages does not change noticeably with metamorphic grade, and consists of chloritoid, kyanite, chlorite, quartz, white mica and Fe-Ti oxides. Pseudosections for selvage and precursor bulk compositions indicate that the observed mineral assemblages were stable at regional metamorphic conditions of 550,600 °C and 0.8,1.1 GPa. A mass balance analysis was performed to assess the nature and magnitude of geochemical alteration that produced the selvages adjacent to the veins. On average, selvages lost about ,26% mass relative to precursors. Mass losses of Na, K, Ca, Rb, Sr, Cs, Ba and volatiles were ,30 to ,60% and resulted from the destruction of white mica. Si was depleted from most selvages and transported locally to adjacent veins; average selvage Si losses were about ,50%. Y and rare earth elements were added due to the growth of monazite in cracks cutting apatite. The mass balance analysis also suggests some addition of Ti occurred, consistent with the presence of rutile and hematite-ilmenite solid solutions in veins. No major losses of Al from selvages were observed, but Al was added in some cases. Consequently, the Al needed to precipitate vein kyanite was not derived locally from the selvages. Veins more than an order of magnitude thicker than those typically observed in the field would be necessary to accommodate the Na and K lost from the selvages during alteration. Therefore, regional transport of Na and K out of the local rock system is inferred. In addition, to account for the observed abundances of kyanite in the veins, large fluid-rock ratios (102,103 m3fluid m,3rock) and time-integrated fluid fluxes in excess of ,104 m3fluid m,2rock are required owing to the small concentrations of Al in aqueous fluids. It is concluded that the quartz-kyanite veins and their selvages were produced by regional-scale advective mass transfer by means of focused fluid flow along a thrust fault zone. The results of this study provide field evidence for considerable Al mass transport at greenschist to amphibolite facies metamorphic conditions, possibly as a result of elevated concentrations of Al in metamorphic fluids due to alkali-Al silicate complexing at high pressures. [source]


    Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2009
    Z. LÜ
    Abstract Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite-bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite-bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na-Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi-phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet-clinopyroxene thermometry yields peak temperatures of 420,520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P,T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4,2.7 GPa and 470,510 °C. Modelled modal abundances of major minerals along a 5 °C km,1 geothermal gradient suggests two critical dehydration processes at ,430 and ,510 °C respectively. Computed garnet composition patterns are in good agreement with measured core-rim profiles. The petrological study of coesite-bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP-LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP-LT assemblages at most localities. [source]


    Polymetamorphism, zircon growth and retention of early assemblages through the dynamic evolution of a continental arc in Fiordland, New Zealand

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2009
    J. M. SCOTT
    Abstract The Marguerite Amphibolite and associated rocks in northern Fiordland, New Zealand, contain evidence for retention of Carboniferous metamorphic assemblages through Cretaceous collision of an arc, emplacement of large volumes of mafic magma, high- P metamorphism and then extensional exhumation. The amphibolite occurs as five dismembered aluminous meta-gabbroic xenoliths up to 2 km wide that are enclosed within meta-leucotonalite of the Lake Hankinson Complex. A first metamorphic event (M1) is manifest in the amphibolite as a pervasively lineated pargasite,anorthite,kyanite or corundum ± rutile assemblage, and as diffusion-zoned garnet in pelitic schist xenoliths within the amphibolite. Thin zones of metasomatically Al-enriched leucotonalite directly at the margins of each amphibolite xenolith indicate element redistribution during M1 and equilibration at 6.6 ± 0.8 kbar and 618 ± 25 °C. A second phase of recrystallization (M2) formed patchy and static margarite ± kyanite,staurolite,chlorite,plagioclase,epidote assemblages in the amphibolite, pseudomorphs of coronas in gabbronorite, and thin high-grossular garnet rims in the pelitic schists. Conditions of M2, 8.8 ± 0.6 kbar and 643 ± 27 °C, are recorded from the rims of garnet in the pelitic schists. Cathodoluminescence imaging and simultaneous acquisition of U-Th-Pb isotopes and trace elements by depth-profiling zircon grains from one pelitic schist reveals four stages of growth, two of which are metamorphic. The first metamorphic stage, dated as 340.2 ± 2.2 Ma, is correlated with M1 on the basis that the unusual zircon trace element compositions indicate growth from a metasomatic fluid derived from the surrounding amphibolite during penetrative deformation. A second phase of zircon overgrowth coupled with crosscutting relationships date M2 to between 119 and 117 Ma. The Early Carboniferous event has not previously been recognized in northern Fiordland, whereas the latter event, which has been identified in Early Cretaceous batholiths, their xenoliths, and rocks directly at batholith margins, is here shown to have also affected the country rock. However, the effects of M2 are fragmentary due to limited element mobility, lack of deformation, distance from a heat source and short residence time in the lower crust during peak P and T. It is possible that many parts of the Fiordland continental arc achieved high- P conditions in the Early Cretaceous but retain earlier metamorphic or igneous assemblages. [source]


    Formation of clinopyroxene + spinel and amphibole + spinel symplectites in coronitic gabbros from the Sierra de San Luis (Argentina): a key to post-magmatic evolution

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2008
    G. CRUCIANI
    Abstract The El Arenal metagabbros preserve coronitic shells of orthopyroxene ± Fe-oxide around olivine, as well as three different types of symplectite consisting of amphibole + spinel, clinopyroxene + spinel and, more rarely, orthopyroxene + spinel. The textural features of the metagabbros can be explained by the breakdown of the olivine + plagioclase pair, producing orthopyroxene coronas and clinopyroxene + spinel symplectites, followed by the formation of amphibole + spinel symplectites, reflecting a decrease in temperature and, possibly, an increase in water activity with respect to the previous stage. The metagabbros underwent a complex P,T history consisting of an igneous stage followed by cooling in granulite, amphibolite and greenschist facies conditions. Although the P,T conditions of emplacement of the igneous protolith are still doubtful, the magmatic assemblage suggests that igneous crystallization occurred at a pressure lower than 6 kbar and at 900,1100 °C. Granulitic P,T conditions have been estimated at about 900 °C and 7,8 kbar combining conventional thermobarometry and pseudosection analysis. Pseudosection calculation has also shown that the formation of the amphibole + spinel symplectite could have been favoured by an increase in water activity during the amphibolite stage, as the temperature of formation of this symplectite strongly depends on aH2O (<740 °C for aH2O = 0.5; <790 °C for aH2O = 1). Furthermore, but not pervasive, re-equilibration under greenschist facies P,T conditions is documented by retrograde epidote and chlorite. The resulting counterclockwise P,T path consists of progressive, nearly isobaric cooling from the igneous stage down to the granulite, amphibolite and greenschist stage. [source]


    Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite,monazite,xenotime phase relations from 250 to 610 °C

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2008
    E. JANOTS
    Abstract The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well-established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (,600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low-grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (,440,450 °C, thermometry based on chlorite,choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X-ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid,out zone boundary (,556,580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re-equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade. [source]


    Separate or shared metamorphic histories of eclogites and surrounding rocks?

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2006
    An example from the Bohemian Massif
    Abstract Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite-dominated volcano-sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite-bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet,staurolite,kyanite,biotite,plagioclase,muscovite,quartz,ilmenite ± rutile ± silli-manite and prograde-zoned garnet includes chloritoid,chlorite,paragonite,margarite, staurolite,chlorite,paragonite,margarite and kyanite,chlorite,rutile. In pseudosection modelling in the system Na2O,CaO,K2O,FeO,MgO,Al2O3,SiO2,H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite,+,paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet,staurolite,biotite,muscovite,quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet,amphibole,plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610,660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase,clinopyroxene symplectites, epidote and late amphibole,plagioclase domains. Garnet commonly includes rutile,quartz,epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O-undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote,amphibole,plagioclase indicating that decompression occurred under decreasing temperature into garnet-free epidote,amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km,1, respectively, to metamorphic pressure peaks that are 6,7 kbar apart. The eclogite,orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared. [source]


    Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern Alps

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2006
    M. JANÁK
    Abstract New evidence for ultrahigh-pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet-bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase-peridotite or the spinel-peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low-Al orthopyroxene + clinopyroxene + Cr-spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr-spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high-Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet-olivine and garnet-orthopyroxene Fe-Mg exchange thermometers and (ii) the Al-in-orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation. [source]


    Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone, central Argentina

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2005
    S. J. WHITMEYER
    Abstract The Tres Arboles ductile fault zone in the Eastern Sierras Pampeanas, central Argentina, experienced multiple ductile deformation and faulting events that involved a variety of textural and reaction hardening and softening processes. Much of the fault zone is characterized by a (D2) ultramylonite, composed of fine-grained biotite + plagioclase, that lacks a well-defined preferred orientation. The D2 fabric consists of a strong network of intergrown and interlocking grains that show little textural evidence for dislocation or dissolution creep. These ultramylonites contain gneissic rock fragments and porphyroclasts of plagioclase, sillimanite and garnet inherited from the gneissic and migmatitic protolith (D1) of the hangingwall. The assemblage of garnet + sillimanite + biotite suggests that D1-related fabrics developed under upper amphibolite facies conditions, and the persistence of biotite + garnet + sillimanite + plagioclase suggests that the ultramylonite of D2 developed under middle amphibolite facies conditions. Greenschist facies, mylonitic shear bands (D3) locally overprint D2 ultramylonites. Fine-grained folia of muscovite + chlorite ± biotite truncate earlier biotite + plagioclase textures, and coarser-grained muscovite partially replaces relic sillimanite grains. Anorthite content of shear band (D3) plagioclase is c. An30, distinct from D1 and D2 plagioclase (c. An35). The anorthite content of D3 plagioclase is consistent with a pervasive grain boundary fluid that facilitated partial replacement of plagioclase by muscovite. Biotite is partially replaced by muscovite and/or chlorite, particularly in areas of inferred high strain. Quartz precipitated in porphyroclast pressure shadows and ribbons that help define the mylonitic fabric. All D3 reactions require the introduction of H+ and/or H2O, indicating an open system, and typically result in a volume decrease. Syntectonic D3 muscovite + quartz + chlorite preferentially grew in an orientation favourable for strain localization, which produced a strong textural softening. Strain localization occurred only where reactions progressed with the infiltration of aqueous fluids, on a scale of hundreds of micrometre. Local fracturing and microseismicity may have induced reactivation of the fault zone and the initial introduction of fluids. However, the predominant greenschist facies deformation (D3) along discrete shear bands was primarily a consequence of the localization of replacement reactions in a partially open system. [source]