Cervical Level (cervical + level)

Distribution by Scientific Domains


Selected Abstracts


Cells of all somitic compartments are determined with respect to segmental identity

DEVELOPMENTAL DYNAMICS, Issue 4 2005
Marlyse Dieuguie Fomenou
Abstract Development of somite cells is orchestrated by two regulatory processes. Differentiation of cells from the various somitic compartments into different anlagen and tissues is regulated by extrinsic signals from neighboring structures such as the notochord, neural tube, and surface ectoderm. Morphogenesis of these anlagen to form specific structures according to the segmental identity of each somite is specified by segment-specific positional information, based on the Hox -code. It has been shown that following experimental rotation of presomitic mesoderm or newly formed somites, paraxial mesodermal cells adapt to the altered signaling environment and differentiate according to their new orientation. In contrast, presomitic mesoderm or newly formed somites transplanted to different segmental levels keep their primordial segmental identity and form ectopic structures according to their original position. To determine whether all cells of a segment, including the dorsal and ventral compartment, share the same segmental identity, presomitic mesoderm or newly formed somites were rotated and transplanted from thoracic to cervical level. These experiments show that cells from all compartments of a segment are able to interpret extrinsic local signals correctly, but form structures according to their original positional information and maintain their original Hox expression in the new environment. Developmental Dynamics 233:1386,1393, 2005. © 2005 Wiley-Liss, Inc. [source]


CLINICAL, MRI, AND SKIN BIOPSY FINDINGS IN SENSORY GANGLIONOPATHIES

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2000
A. Sghirlanzoni
Unlike peripheral motor disorders, sensory disturbances are rarely diagnosed by the probable site of pathology. This approach is useful in the differential diagnosis between chronic sensory axonal neuropathies and ganglionopathies, in which routine clinical and neurophysiological evaluation alone often do not provide definite clues. Methods: Thirty patients with peripheral sensory disturbances were investigated. MRI was performed at cervical level in all cases. Four patients also underwent thoracic and lumbar MRI. Seventeen patients underwent skin biopsy at the proximal thigh and the distal leg. In 4 of them, further skin biopsies were taken at C5 dermatome and at the hand. Density of intra-epidermal nerve fibers (IENF) was quantified. Results: In 22 patients, sensory ganglionopathy was suspected. Disease was idiopathic in 7 cases; paraneoplastic in 3 cases; and associated with Sjögren, AIDS, autoimmune chronic hepatitis, and cisplatin neurotoxicity in 4 cases. One patient had a hereditary sensory autonomic neuropathy. Four patients had vitamin E deficiency and 3 patients a spinocerebellar syndrome. In 8 patients, sensory axonal neuropathy related to diabetes, alcoholism, and AIDS on antiretroviral treatment, and monoclonal gammopathy of undetermined significance was diagnosed. MRI findings: All ganglionopathy patients showed posterior columns hyperintensity on T2-weighted MRI. Conversely, MRI was negative in all axonal sensory neuropathy patients. Skin biopsy findings: In neuropathies, IENF density was significantly lower at the distal leg than at the proximal thigh, while ganglionopathies did not show any change with respect to the rostral:caudal orientation. A similar pattern of epidermal denervation was observed in the arm. Discussion: The degeneration of both central and peripheral sensory pathway in a fashion that is not length-dependent localizes the disease to T-shaped sensory neurons Early ataxia and cutaneous sensory symptoms involving the proximal regions of the body reflect this pattern of denervation and should prompt the diagnosis of ganglionopathy. This can be confirmed by T2-weighted hyperintensity in the posterior columns and a distinct pattern of IENF loss. [source]


Neurorehabilitation of Upper Extremities in Humans with Sensory-Motor Impairment

NEUROMODULATION, Issue 1 2002
Dejan B. Popovic PhD
Abstract Today most clinical investigators agree that the common denominator for successful therapy in subjects after central nervous system (CNS) lesions is to induce concentrated, repetitive practice of the more affected limb as soon as possible after the onset of impairment. This paper reviews representative methods of neurorehabilitation such as constraining the less affected arm and using a robot to facilitate movement of the affected arm, and focuses on functional electrotherapy promoting the movement recovery. The functional electrical therapy (FET) encompasses three elements: 1) control of movements that are compromised because of the impairment, 2) enhanced exercise of paralyzed extremities, and 3) augmented activity of afferent neural pathway. Liberson et al. (1) first reported an important result of the FET; they applied a peroneal stimulator to enhance functionally essential ankle dorsiflexion during the swing phase of walking. Merletti et al. (2) described a similar electrotherapeutic effect for upper extremities; they applied a two-channel electronic stimulator and surface electrodes to augment elbow extension and finger extension during different reach and grasp activities. Both electrotherapies resulted in immediate and carry-over effects caused by systematic application of FET. In studies with subjects after a spinal cord lesion at the cervical level (chronic tetraplegia) (3,5) or stroke (6), it was shown that FET improves grasping and reaching by using the following outcome measures: the Upper Extremity Function Test (UEFT), coordination between elbow and shoulder movement, and the Functional Independence Measure (FIM). Externally applied electrical stimuli provided a strong central sensory input which could be responsible for the changes in the organization of impaired sensory-motor mechanisms. FET resulted in stronger muscles that were stimulated directly, as well as exercising other muscles. The ability to move paralyzed extremities also provided awareness (proprioception and visual feedback) of enhanced functional ability as being very beneficial for the recovery. FET contributed to the increased range of movement in the affected joints, increased speed of joint rotations, reduced spasticity, and improved functioning measured by the UEFT, the FIM and the Quadriplegia Index of Function (QIF). [source]


ORIGINAL ARTICLE: Risk of intravascular injection in transforaminal epidural injections

ANAESTHESIA, Issue 9 2010
F. S. Nahm
Summary Transforaminal epidural injection is an effective method for treating spinal pain but can cause devastating complications that result from accidental vascular uptake of the injectate or a direct vascular injury. We prospectively evaluated the patient factors that might be associated with intravascular uptake during transforaminal epidural injections. A total of 2145 injections were performed on 1088 patients under contrast-enhanced real-time fluoroscopic guidance. The collected data included the patient's age, sex, body mass index, diagnosis, injection level, side of injection, history of spinal surgery at the targeted level, and the number of injections at the targeted site. The overall incidence of intravascular injection was 10.5% (224/2145). The highest incidence was at the cervical level (28/136; 20.6%), followed by the sacral level (111/673; 16.5%), the thoracic level (23/280; 8.2%) and the lumbar level (64/1056; 6.1%). The difference was significant for the cervical and sacral level compared with the lumbar and thoracic levels (p < 0.001). Intravascular injection was not associated with the other patient characteristics studied. [source]