Cellular Retention (cellular + retention)

Distribution by Scientific Domains


Selected Abstracts


HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells

JOURNAL OF NEUROCHEMISTRY, Issue 3 2008
Patrick T. Ronaldson
Abstract Brain human immunodeficiency virus type-1 (HIV-1) infection is associated with oxidative stress, which may lead to HIV-1 encephalitis, a chronic neurodegenerative condition. In vitro, oxidative stress can be induced in glial cells by exposure to HIV-1 envelope protein glycoprotein (gp120). Multidrug resistance proteins (Mrps) are known to efflux endogenous substrates (i.e. GSH and GSSG) involved in cellular defense against oxidative stress. Altered GSH/GSSG export may contribute to oxidative damage during HIV-1 encephalitis. At present, it is unknown if gp120 exposure can alter the functional expression of Mrp isoforms. Heat-shock protein 70, inducible nitric oxide synthase, intracellular GSSG, 2,,7,-dichlorofluorescein fluorescence, and extracellular nitrite were increased in primary cultures of rat astrocytes triggered with gp120, suggesting an oxidative stress response. RT-PCR and immunoblot analysis demonstrated increased Mrp1 mRNA (2.3-fold) and protein (2.2-fold), respectively, in gp120 treated astrocytes while Mrp4 mRNA or protein expression was not changed. Cellular retention of 2,,7,-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, an established Mrp substrate, was reduced (twofold) in gp120-treated astrocytes, suggesting increased Mrp-mediated transport. In addition, GSH and GSSG export were enhanced in gp120-triggered cells. These data suggest that gp120 can up-regulate Mrp1, but not Mrp4, functional expression in cultured astrocytes. Our observation of increased GSH/GSSG efflux in response to gp120 treatment implies that Mrp isoforms may be involved in regulating the oxidative stress response in glial cells. [source]


Cigarette smoke extract affects functional activity of MRP1 in bronchial epithelial cells

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 5 2007
Margaretha van der Deen
Abstract Cigarette smoke is the principal risk factor for development of chronic obstructive pulmonary disease (COPD). Multidrug resistance-associated protein 1 (MRP1) is a member of the ATP-binding cassette (ABC) superfamily of transporters, which transport physiologic and toxic substrates across cell membranes. MRP1 is highly expressed in lung epithelium. This study aims to analyze the effect of cigarette smoke extract (CSE) on MRP1 activity. In the human bronchial epithelial cell line 16HBE14o,, MRP1 function was studied flow cytometrically by cellular retention of carboxyfluorescein (CF) after CSE incubation and MRP1 downregulation by RNA interference (siRNA). Cell survival was measured by the MTT assay. Immunocytochemically, it was shown that 16HBE14o, expressed MRP1 and breast cancer resistance protein. Coincubation of CSE IC50 (1.53% ± 0.22%) with MK571 further decreased cell survival 31% (p, = 0.018). CSE increased cellular CF retention dose dependently from 1.7-fold at 5% CSE to 10.3-fold at 40% CSE (both p < 0.05). siRNA reduced MRP1 RNA expression with 49% and increased CF accumulation 67% versus control transfected cells. CSE exposure further increased CF retention 24% (p = 0.031). A linear positive relation between MRP1 function and CSE-modulating effects (r = 0.99, p =0.089) was shown in untransfected, control transfected, and MRP1 downregulated 16HBE14o, cells analogous to blocking effects with MRP1 inhibitor MK571 (r = 0.99, p = 0.034). In conclusion, cigarette smoke extract affects MRP1 activity probably competitively in bronchial epithelial cells. Inhibition of MRP1 in turn results in higher CSE toxicity. We propose that MRP1 may be a protective protein for COPD development. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:243,251, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20187 [source]


Functions and regulation of human artemis in double strand break repair,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007
Kirsten Dahm
Abstract Cells, which lacked the activity of the nuclease Artemis, retained approximately 10% of unrepaired double strand breaks (DSBs) at later timepoints after ionizing radiation. Ionizing radiation induced hyperphosphorylation of Artemis mainly by ATM and in ATM deficient cells to a minor extent by DNA PK. After induction of DSBs with modified ends by a high dose of calicheamicin ,1, Artemis was phosphorylated by DNA PK. The type of calicheamicin ,1-induced DSBs is likely to represent a subclass of DSBs induced by ionizing radiation. DNA PK-dependent phosphorylation of Artemis after treatment with DSB inducing agents increased the cellular retention of Artemis, maintained its interaction with DNA ends and activated its endonucleolytic activity. The following model is suggested: ATM-dependent phosphorylation of Artemis after ionizing radiation could prevent DNA PK-dependent phosphorylation and activation of undesired endonucleolytic activity at DSBs, which do not require endonucleolytic processing by Artemis. The Artemis:DNA PK complex could be involved in the repair of DSBs, which carry modified ends and are refractory to repair by otherwise lesion specific enzymes because of the presence of an inhibitory lesion in the opposite strand. J. Cell. Biochem. 100: 1346,1351, 2007. © 2007 Wiley-Liss, Inc. [source]


Transvenous Intramyocardial Cellular Delivery Increases Retention in Comparison to Intracoronary Delivery in a Porcine Model of Acute Myocardial Infarction

JOURNAL OF INTERVENTIONAL CARDIOLOGY, Issue 5 2008
JON C. GEORGE M.D.
Background: Clinical trials using intracoronary (IC) delivery of cells have addressed efficacy but the optimal delivery technique is unknown. Our study aimed to determine whether transvenous intramyocardial (TVIM) approach was advantageous for cellular retention in AMI. Methods: Domestic pigs (n = 4) underwent catheterization with coronary angiography and ventriculography prior to infarction and pre- and post-cells. Pigs underwent 90-minute balloon occlusion of the left anterior descending artery (LAD). After one week they were prepared for IC (n = 2) or TVIM (n = 2) delivery of bone marrow mononuclear cells (MNC) labeled with GFP. IC infusion used an over-the-wire catheter to engage the LAD and balloon inflation to prevent retrograde flow. Venography via the coronary sinus was used for TVIM delivery. The anterior interventricular vein was engaged with a guidewire allowing use of the TransAccessÔ catheter that is outfitted with an ultrasound tip for visualization. Animals were sacrificed one hour after delivery and tissue was analyzed. Results: Procedures were performed without complication and monitoring was uneventful. 1 × 108 MNC were isolated from each bone marrow (BM) preparation and 1 × 107 MNC delivered. Ventriculography at one week revealed wall motion abnormalities consistent with an anterior AMI. TVIM and IC delivery revealed mean 452 cells per section and 235 cells per section on average, respectively, in the infarct zone (P = 0.01). Conclusion: We have demonstrated that TVIM approach for cell delivery is feasible and safe. Moreover, this approach may provide an advantage over IC infusion in retention of the cellular product; however, larger studies will be necessary. [source]


Ancient conserved domain protein-1 binds copper and modifies its retention in cells

JOURNAL OF NEUROCHEMISTRY, Issue 1 2007
Alexandra Alderton
Abstract The ancient conserved domain protein (ACDP) family are a recently identified group of homologous mammalian proteins. Some family members have been suggested to have roles in the metabolism of metals. We investigated the capacity of ACDP-1 to bind metals. Using immobilised metal affinity chromatography and isothermal titration calorimetry we determined that ACDP-1 is a high affinity copper binding protein able to bind copper at nanomolar concentrations. In addition the promoter of ACDP-1 contains metal response elements and the cellular expression of ACDP-1 alters cellular retention of copper. However, cellular expression of ACDP-1 does not alter cellular resistance to the toxicity of copper or other metals. As our findings place the subcellular localisation of ACDP-1 in the cytoplasm it is possible that ACDP-1 represent a novel copper chaperone or storage protein. [source]