| |||
Cellular Proliferation (cellular + proliferation)
Selected AbstractsThree-dimensional Culture of Human Nucleus Pulposus Cells in Fibrin Clot: Comparisons on Cellular Proliferation and Matrix Synthesis With Cells in AlginateARTIFICIAL ORGANS, Issue 1 2008Shu-Hua Yang Abstract:, Regeneration of nucleus pulposus (NP) tissue may stop or reverse early intervertebral disk (IVD) degeneration. Cellular proliferation and matrix synthesis can be promoted by incorporation of cells and bioscaffolds. However, insertion of preshaped solid bioscaffolds may damage remaining IVD integrity. Fibrin clots can be introduced in a minimally invasive manner with polymerization in desired three-dimensional shape and retention of cells. In this study, we investigated the cellular proliferation and matrix synthesis of human NP cells in the fibrin clots in vitro. Monolayer-expanded cells were embedded in fibrin clot or alginate and were cultivated in vitro for 2 weeks. Increased DNA content and decreased expression of apoptosis stimulating fragment (Fas)-associated death-domain protein in fibrin scaffolds suggested higher cellular proliferation and reduced apoptosis. Superior proteoglycan synthesis was found in fibrin scaffolds. As expression of collagens I and X increased and SOX9 expression decreased, fibrin scaffolds tended to promote fibrotic transformation and inhibit chondrogenesis. Adjustments of fibrin preparations are needed to make it more suitable for IVD regeneration. [source] Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regenerationJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 12 2007Iraz T Aydin Abstract Background and Aim:, The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. Methods:, Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. Results:, The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. Conclusion:, The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration. [source] The effects of low level laser irradiation on osteoblastic cellsORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 1 2001A. R. Coombe Low level laser therapy has been used in treating many conditions with reports of multiple clinical effects including promotion of healing of both hard and soft tissue lesions. Low level laser therapy as a treatment modality remains controversial, however. The effects of wavelength, beam type, energy output, energy level, energy intensity, and exposure regime of low level laser therapy remain unexplained. Moreover, no specific therapeutic window for dosimetry and mechanism of action has been determined at the level of individual cell types. The aim of this study was to investigate the effects of low level laser irradiation on the human osteosarcoma cell line, SAOS-2. The cells were irradiated as a single or daily dose for up to 10 days with a GaAlAs continuous wave diode laser (830 nm, net output of 90 mW, energy levels of 0.3, 0.5, 1, 2, and 4 Joules). Cell viability was not affected by laser irradiation, with the viability being greater than 90% for all experimental groups. Cellular proliferation or activation was not found to be significantly affected by any of the energy levels and varying exposure regimes investigated. Low level laser irradiation did result in a heat shock response at an energy level of 2 J. No significant early or late effects of laser irradiation on protein expression and alkaline phosphatase activity were found. Investigation of intracellular calcium concentration revealed a tendency of a transient positive change after irradiation. Low level laser irradiation was unable to stimulate the osteosarcoma cells utilised for this research at a gross cell population level. The heat shock response and increased intracellular calcium indicate that the cells do respond to low level laser irradiation. Further research is required, utilising different cell and animal models, to more specifically determine the effects of low level laser irradiation at a cellular level. These effects should be more thoroughly investigated before low level laser therapy can be considered as a potential accelerator stimulus for orthodontic tooth movement. [source] 1,,25-Dihydroxyvitamin D3 and its analogues, EB1089 and CB1093, profoundly inhibit the in vitro proliferation of the human hepatoblastoma cell line HepG2ANZ JOURNAL OF SURGERY, Issue 7 2001J. Akhter Background: 1,,25-dihydroxyvitamin D3 (1,25[OH]2D3) has been shown to inhibit the proliferation of various cancer cells including colon, prostate, melanoma, osteosarcoma and breast cancer. Methods: The human hepatoma cell line (HepG2) was cultured with 1,25(OH)2D3 or one of two analogues EB1089 or CB1093 for various durations. Cellular proliferation was measured by uptake of [3H]thymidine, and cell numbers were determined by trypan blue exclusion counting. Results: 1,25(OH)2D3, EB1089 and CB1093 all inhibited proliferation of HepG2 by up to 90% after 5 days of treatment, compared to the untreated controls. Decreased proliferation was associated with an approximately 50% reduction in cell numbers at concentrations of up to 10,10 mol/L after 5 days of treatment with 1,25(OH)2D3. Cell proliferation rapidly recovered in cultures treated with lower concentrations of 1,25(OH)2D3 (10,10 and 10,11 mol/L) when 1,25(OH)2D3 was removed from the cultures by placing cells in serum containing medium without 1,25(OH)2D3. When HepG2 cells were treated with 10,8 mol/L 1,25(OH)2D3 for 5 weeks, there was still significant inhibition of proliferation, although at week 5 there was 66% inhibition compared to 93% at the end of week 1. Conclusions: 1,25(OH)2D3, EB1089 and CB1093 all significantly inhibit the proliferation of HepG2 hepatoblastoma cells, with EB1089 being the most potent at lower concentrations. Inhibition can be maintained for at least 4 weeks, but is reversed after removal of vitamin D3. [source] Three-dimensional Culture of Human Nucleus Pulposus Cells in Fibrin Clot: Comparisons on Cellular Proliferation and Matrix Synthesis With Cells in AlginateARTIFICIAL ORGANS, Issue 1 2008Shu-Hua Yang Abstract:, Regeneration of nucleus pulposus (NP) tissue may stop or reverse early intervertebral disk (IVD) degeneration. Cellular proliferation and matrix synthesis can be promoted by incorporation of cells and bioscaffolds. However, insertion of preshaped solid bioscaffolds may damage remaining IVD integrity. Fibrin clots can be introduced in a minimally invasive manner with polymerization in desired three-dimensional shape and retention of cells. In this study, we investigated the cellular proliferation and matrix synthesis of human NP cells in the fibrin clots in vitro. Monolayer-expanded cells were embedded in fibrin clot or alginate and were cultivated in vitro for 2 weeks. Increased DNA content and decreased expression of apoptosis stimulating fragment (Fas)-associated death-domain protein in fibrin scaffolds suggested higher cellular proliferation and reduced apoptosis. Superior proteoglycan synthesis was found in fibrin scaffolds. As expression of collagens I and X increased and SOX9 expression decreased, fibrin scaffolds tended to promote fibrotic transformation and inhibit chondrogenesis. Adjustments of fibrin preparations are needed to make it more suitable for IVD regeneration. [source] The topical glucocorticoids beclomethasone dipropionate and fluticasone propionate inhibit human T-cell allergen-induced production of IL-5, IL-3 and GM-CSF mRNA and proteinCLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2001N. Powell T-cell production of eosinophil-active cytokines (IL-5, IL-3, GM-CSF) is thought to be fundamental to asthma pathogenesis. Inhaled aeroallergens may be one important stimulus for T-cell cytokine production in asthma. To compare the potency and efficacy of the topical anti-asthma glucocorticoids beclomethasone dipropionate (BDP) and fluticasone propionate (FP) in inhibiting allergen-driven peripheral blood T-cell proliferation and production of IL-3, IL-5 and GM-CSF mRNA and protein. Peripheral blood mononuclear cells from six atopic asthmatics sensitized to house dust mite (HDM) were cultured in the presence of HDM and serial dilutions of BDP or FP in vitro. Cellular proliferation (7 days) and culture supernatant cytokine concentrations (6 days) were measured by uptake of tritiated thymidine and ELISA, respectively. Cytokine mRNA expression (24 h) was measured in three subjects using a quantitative PCR technique. Both BDP and FP inhibited allergen-induced T-cell proliferation, expression of IL-3, IL-5 and GM-CSF mRNA, and secretion of the corresponding proteins in a concentration-dependent fashion. FP was considerably more potent, but not more efficacious, in exerting these actions. Both BDP and FP have the potential markedly to inhibit allergen-induced T-cell production of asthma-relevant cytokines. This activity is effected at the level of T-cell proliferation and cytokine gene transcription. These properties may be key features of the anti-asthma activity of these drugs. The greater potency of FP in vitro may be responsible for its greater clinical potency. [source] Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomesCONTRAST MEDIA & MOLECULAR IMAGING, Issue 5 2009Stefaan J. H. Soenen Abstract Iron oxide nanoparticles are the most widely used T2/T2* contrast agents and for biomedical research purposes, one of the main applications is the in vitro labeling of stem or therapeutic cells, allowing them to be subsequently tracked in vivo upon transplantation. To allow this, the nanoparticles used should not show any sign of cytotoxicity and not affect cellular physiology as this could impede normal cell functionality in vivo or lead to undesired side-effects. Assessing the biocompatibility of the nanoparticles has proven to be quite a difficult task. In the present work, a small overview of commonly used assays is presented in order to assess several aspects, such as cell viability, induction of reactive oxygen species, nanoparticle uptake, cellular morphology, cellular proliferation, actin cytoskeleton architecture and differentiation of stem cells. The main focus is on comparing the advantages and disadvantages of the different assays, highlighting several common problems and presenting possible solutions to these problems as well as pointing out the high importance of the relationship between intracellular nanoparticle concentration and cytotoxicity. Copyright © 2009 John Wiley & Sons, Ltd. [source] Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progressionCYTOSKELETON, Issue 1 2007Richard S. Cameron Abstract Rat Myo16a and Myo16b comprise the founding members of class XVI myosin and are characterized by an N-terminal ankyrin repeat domain thought to mediate an association with protein phosphatase 1 catalytic subunits 1, and 1,. Myo16b is the principal isoform and reveals predominant expression in developing neural tissue. Here, we use COS-7 cells as a model system to develop an understanding of Myo16b function. We find that Myo16b displays predominant localization in the nucleus of cells transitioning through interphase, but is not associated with processes of mitosis. Using a panel of EGFP-Myo16b-expression plasmids in transient transfection studies, we identified the COOH-terminal residues 1616,1912 as necessary and solely sufficient to target Myo16b to the nucleus. We show that the Myo16b-tail region directs localization to a nuclear compartment containing profilin and polymerized actin, which appears to form a three-dimensional meshwork through the depth of the nucleus. Further, we demonstrate that this compartment localizes within euchromatic regions of the genome and contains proliferating cell nuclear antigen (PCNA) and cyclin A, both markers of S-phase of the cell cycle. Cells transiently expressing Myo16b or Myo16b-tail region show limited incorporation of BrdU, delayed progression through S-phase of the cell cycle, and curtailed cellular proliferation. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source] Circadian clock and cell cycle gene expression in mouse mammary epithelial cells and in the developing mouse mammary glandDEVELOPMENTAL DYNAMICS, Issue 1 2006Richard P. Metz Abstract Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation, and differentiation marker genes. Expression of the clock genes Per1 and Bmal1 were elevated in differentiated HC-11 cells, whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands, as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, whereas Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels, whereas Per1 and Bmal1 expression changed in conjunction with ,- casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. Developmental Dynamics 235:263,271, 2006. © 2005 Wiley-Liss, Inc. [source] Xath5 regulates neurogenesis in the Xenopus olfactory placodeDEVELOPMENTAL DYNAMICS, Issue 4 2002Carole J. Burns Abstract Helix-loop-helix (HLH) genes function as important regulators of neurogenesis in both the peripheral and central nervous systems. The olfactory system is an ideal tissue in which to study the role of these genes in regulating the acquisition of neuronal cell fate, particularly that of the olfactory receptor neuron (ORN). Here we describe the expression of several basic HLH (bHLH) and repeat HLH (rHLH) factors during olfactory placode development in Xenopus laevis. Our work reveals that a combination of both bHLH and rHLH genes are sequentially expressed within the nascent olfactory placode during normal development. Moreover, overexpression of the bHLH factor, Xenopus atonal homologue 5 (Xath5), promotes olfactory neural fate independent of cellular proliferation within a restricted domain at the anterior of the embryo. Collectively, our data argue that HLH genes are expressed in a cascade during olfactory placode development and that the activity of an atonal homologue, Xath5, can promote ORN fate but only in the appropriate developmental context. © 2002 Wiley-Liss, Inc. [source] An SNF2 factor involved in mammalian development and cellular proliferationDEVELOPMENTAL DYNAMICS, Issue 1 2001Eric H. Raabe Abstract Members of the SNF2 (Sucrose Non-Fermenter) family of chromatin-remodeling proteins function in processes ranging from DNA repair to transcription to methylation. Using differential display, we recently identified a novel member of the SNF2 family that is highly expressed at the mRNA level in proliferating cells and is down-regulated during apoptosis. We have named this gene PASG (Proliferation-Associated SNF2-like Gene). Northern blot analysis of adult mouse tissues shows PASG to be highly expressed in proliferating organs such as thymus, bone marrow, and testis and absent from nonproliferative tissues such as brain and heart. In situ hybridization analysis of mouse embryos shows that PASG is differentially expressed during development, with highest expression in developing face, limbs, skeletal muscle, heart, and tail. In vitro, PASG expression correlates with a shift from a quiescent to a proliferative state. Mice null for PASG (also known as LSH or Hells) are reported to die perinatally, although the mechanism for lethality is unclear (Geiman and Muegge, 2000). To test the hypothesis that PASG functions in cell proliferation, we compared 5-bromodeoxyuridine (BrdU) incorporation in C33A cells transiently transfected with PASG versus empty vector and found that PASG transfected cells showed a significant decrease in the amount of BrdU incorporation. These findings suggest that PASG plays a role in cell proliferation and may function in the development of multiple cell lineages during murine embryogenesis. © 2001 Wiley-Liss, Inc. [source] Thiazolidinediones and the preservation of ,-cell function, cellular proliferation and apoptosisDIABETES OBESITY & METABOLISM, Issue 8 2008Michael Decker The thiazolidinediones (TZDs) or glitazones are pharmaceutical agents that have profound effects on energy expenditure and conservation. They also exert significant anti-inflammatory effects and influence cell proliferation and cell death. The drugs are primarily used in clinical practice in the treatment of patients with type 2 diabetes mellitus, a disorder of insulin resistance that occurs when the pancreatic ,-cells are unable to produce adequate amounts of insulin to maintain euglycaemia. Loss of pancreatic ,-cell function in type 2 diabetes is progressive and often precedes overt diabetes by 10 years or more, as was shown by the United Kingdom Prospective Diabetes Study. Any therapeutic or preventive approach that would limit or reverse loss of ,-cell function in diabetes would have profound effects on the morbidity associated with this widespread disease. Evidence suggesting a potential role of TZDs in preserving ,-cell function in type 2 diabetes as well as the ability of these agents to exert anti-inflammatory and proapoptotic anticancer effects, and their ability to promote cellular proliferation in various organs is reviewed. [source] Role of mitogen-activated protein kinase cascades in P2Y receptor-mediated trophic activation of astroglial cells ,DRUG DEVELOPMENT RESEARCH, Issue 2-3 2001Joseph T. Neary Abstract The trophic actions of extracellular nucleotides and nucleosides on astroglial cells in the central nervous system may be important in development as well as injury and repair. Here we summarize recent findings on the signal transduction mechanisms and gene expression that mediate the trophic effects of extracellular ATP on astrocyte cultures, with a particular emphasis on mitogenesis. Activation of ATP/P2Y receptors leads to the stimulation of mitogen-activated protein kinase (MAPK) cascades, which play a crucial role in cellular proliferation, differentiation, and survival. Inhibition of ERK and p38, members of two distinct MAPK cascades, interferes with the ability of extracellular ATP to stimulate astrocyte proliferation, thereby indicating their importance in mitogenic signaling by P2Y receptors. Signaling from P2Y receptors to ERK involves phospholipase D and a calcium-independent protein kinase C isoform, PKC; this pathway is independent of the phosphatidylinositol-phospholipase C / calcium pathway which is also coupled to P2Y receptors. Pharmacological studies suggest that astrocytes may express an as-yet uncloned P2Y receptor that recruits a novel MEK activator in the ERK cascade. Extracellular ATP can also potentiate fibroblast growth factor (FGF)-2-induced proliferation, and studies on interactions between ATP and FGF-2 signaling pathways have revealed that although ATP does not activate cRaf-1, the first protein kinase in the ERK cascade, it can reduce cRaf-1 activation by FGF-2. As intermediate levels of Raf activity stimulate the cell cycle, the partial inhibition of FGF-induced Raf activity by ATP may contribute to the enhancing effect of ATP on FGF-2-induced astrocyte proliferation. Activation of P2Y receptors also leads to nuclear signaling, and the use of DNA arrays has shown that treatment of astrocytes with extracellular ATP results in the up- and downregulation of a number of genes; studies to determine which of these genes are regulated by MAPKs are now in progress. Elucidation of the components of MAPK pathways linked to P2Y receptors and subsequent changes in gene expression may provide targets for a new avenue of drug development aimed at the management of astrogliosis which occurs in many types of neurological disorders and neurodegeneration. Drug Dev. Res. 53:158,165, 2001. Published 2001 Wiley-Liss, Inc. [source] Acute exposure of human lung cells to 1,3-butadiene diepoxide results in G1 and G2 cell cycle arrestENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2005Michael Schmiederer Abstract 1,3-butadiene (BD) causes genetic damage, including adduct formation, sister chomatid exchange, and point mutations. Previous studies have focused on the types of genetic damage and tumors found after long-term exposure of rodents to butadiene. This study examined the effect of the most active BD metabolite, butadiene diepoxide (BDO2), on cell cycle entry and progression in human lung fibroblasts (LU cells) with a normal diploid karyotype. Serum-arrested (G0) LU cells were exposed to BDO2 for 1 hr and stimulated to divide with medium containing 10% fetal bovine serum. The BDO2 -treated LU cells were evaluated for cell cycle progression, nuclear localization of arrest mediators, mitotic index, and cellular proliferation. The BDO2 -treated cells demonstrated a substantial inhibition of cell proliferation when treated with 100 ,M BDO2 for 1 hr. No appreciable levels of apoptosis or mitotic figures were observed in the BDO2 -treated cells through 96 hr posttreatment. Flow cytometric analysis revealed that the lack of proliferation in BDO2 -treated LU cells was related to G1 arrest in about half of the cells and a delayed progression through S and G2 arrest in nearly all of the remaining cells. Both G1 and G2 arrest were prolonged and only a very small percentage of BDO2 -treated cells were eventually able to replicate. Increased nuclear localization of both p53 and p21cip1 was observed in BDO2 -treated cells, suggesting that the cell cycle arrest was p21cip1 -mediated. These results demonstrate that BDO2 induces cell cycle perturbation and arrest even with short-term exposure that does not produce other pathologic cellular effects. Environ. Mol. Mutagen., 2005. © 2005 Wiley-Liss, Inc. [source] Investigation of histopathological and cytogenetic effects on Lepomis gibbosus (Pisces: Perciformes) in the Çine stream (Ayd,n/Turkey) with determination of water pollutionENVIRONMENTAL TOXICOLOGY, Issue 6 2005Yücel Ba, lu Koca Abstract Water quality and the distribution of some heavy metals in three different organs of Lepomis gibbosus from the Çine Stream were studied. Also, histopathological changes in gill, liver, and muscle tissue were examined at light microscopical level. Micronucleus (MN) formation in fish erytrocytes, as an indicator of chromosomal damage, has been increasingly used to detect the genotoxic potential of environmental contaminants. The frequency of MN was examined from samples of fish from the Çine Stream and a control group. MN frequency was higher in fish samples caught from the Çine Stream than that in the control group. The chemicals ammonia, nitrite, nitrate, orthophosphate, and sulphate were determined as parameters that possibly affect the gill, liver, and muscle morphology. Zn was the most accumulated metal in tissues as well as in water. Maximum metal accumulation occured in both liver and gills. For histopathological examinations, samples of gills, liver, and muscle tissues of L. gibbosus were studied by using light microscopy. In this study, a significant decrease in mean length of primary and secondary lamellae were observed. Moreover, cellular proliferation developed with secondary lamellae fusion, ballooning degenerations or club deformation of secondary lamellae, as well as distribution of necrotic, hyperplastic and clavate secondary lamellae. In the liver, altered staining, swollen and ruptured parenchymal cells, loss of cord structure, reduce of glycogen in hepatocytes, and vacuolar structure filled with cellular debris and many dark particles were seen. In muscle tissue, focal necrosis, cellular dissolution, and a decline or loss of striatation in muscle fibres were found. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 560,571, 2005. [source] Basic fibrobrast growth factor induces the secretion of vascular endothelial growth factor by human aortic smooth muscle cells but not by endothelial cellsEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 10 2003F. Belgore Abstract Background, Endothelial cell dysfunction and smooth muscle cell (SMC) proliferation are major events in atherogenesis. Both cells are a source of growth factors that mediate cellular proliferation and chemotaxis. Inappropriate production of, and/or response to, these growth factors (such as vascular endothelial growth factor, VEGF, and basic fibroblast growth factor (bFGF)) may contribute to atherogenesis and therefore to disease progression. Methods, Production of VEGF and its soluble receptor (sFlt-1) by human SMCs and human umbilical endothelial cells (HUVECs) after stimulation with bFGF were examined by ELISA of cell culture media and by Western blotting. Results, Smooth muscle cells produced significantly more VEGF than HUVECs (P < 0·05) after 24 h of culture with bFGF levels , 0·001 µg mL,1. bFGF induced dose-dependent production of VEGF by SMCs, where maximum production was present in 1 µg mL,1 of bFGF. Conversely, the SMCs produced less sFlt-1 than HUVECs (P < 0·05). However, bFGF induced dose-dependent phosphorylation of Flt1 and another VEGF receptor, KDR, in HUVECs but not SMCs. There was no VEGF or sFLT-1 after 6 h of culture in any dose of bFGF in either type of cell. Conclusions, Differences in the production of VEGF and sFlt-1 by SMCs and HUVECs are consistent with the role of these cells in angiogenesis. Induction of VEGF production and expression by bFGF in these cells indicates that this growth factor may participate in angiogenesis indirectly by the induction of VEGF. The production of sFlt-1 by both cell types is in agreement with the notion that sFlt-1 may be involved in the regulation of VEGF activity. Additionally, the ability of bFGF to induce dose-dependent phosphorylation of KDR in HUVECs highlights the important role of bFGF in VEGF-mediated angiogenic processes. [source] An essential role for the H218/AGR16/Edg-5/LPB2 sphingosine 1-phosphate receptor in neuronal excitabilityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001A. John MacLennan Abstract A wealth of indirect data suggest that the H218/AGR16/Edg-5/LPB2 sphingosine 1-phosphate (S1P) receptor plays important roles in development. In vitro, it activates several forms of development-related signal transduction and regulates cellular proliferation, differentiation and survival. It is expressed during embryogenesis, and mutation of an H218 -like gene in zebrafish leads to profound defects in embryonic development. Nevertheless, the in vivo functions served by H218 signalling have not been directly investigated. We report here that mice in which the H218 gene has been disrupted are unexpectedly born with no apparent anatomical or physiological defects. In addition, no abnormalities were observed in general neurological development, peripheral axon growth or brain structure. However, between 3 and 7 weeks of age, H218,/, mice have seizures which are spontaneous, sporadic and occasionally lethal. Electroencephalographic abnormalities were identified both during and between the seizures. At a cellular level, whole-cell patch-clamp recordings revealed that the loss of H218 leads to a large increase in the excitability of neocortical pyramidal neurons. Therefore, H218 plays an essential, unanticipated and functionally important role in the proper development and/or mediation of neuronal excitability. [source] Polyamines and hair: a couple in search of perfectionEXPERIMENTAL DERMATOLOGY, Issue 9 2010Yuval Ramot Please cite this paper as: Polyamines and hair: a couple in search of perfection. Experimental Dermatology 2010; 19: 784,790. Abstract:, Polyamines (spermidine, putrescine and spermine) are multifunctional cationic amines that are indispensable for cellular proliferation; of key significance in the growth of rapidly regenerating tissues and tumors. Given that the hair follicle (HF) is one of the most highly proliferative organs in mammalian biology, it is not surprising that polyamines are crucial to HF growth. Indeed, growing (anagen) HFs show the highest activity of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, while inhibition of ODC, using eflornithine, results in a decreased rate of excessive facial hair growth in vivo and inhibits human scalp hair growth in organ culture. In sheep, manipulation of dietary intake of polyamines also results in altered wool growth. Polyamine-containing nutraceuticals have therefore been proposed as promoters of human hair growth. Recent progress in polyamine research, coupled with renewed interest in the role of polyamines in skin biology, encourages one to revisit their potential roles in HF biology and highlights the need for a systematic evaluation of their mechanisms of action and clinical applications in the treatment of hair disorders. The present viewpoint essay outlines the key frontiers in polyamine-related hair research and defines the major open questions. Moreover, it argues that a renaissance in polyamine research in hair biology, well beyond the inhibition of ODC activity in hirsutism therapy, is important for the development of novel therapeutic strategies for the manipulation of human hair growth. Such targets could include the manipulation of polyamine biosynthesis and the topical administration of selected polyamines, such as spermidine. [source] Attack and defence in the gastric epithelium , a delicate balanceEXPERIMENTAL PHYSIOLOGY, Issue 4 2007Rod Dimaline The gastric epithelium is a complex structure formed into tubular branched gastric glands. The glands contain a wide variety of cell types concerned with the secretion of hydrochloric acid, proteases, mucus and a range of signalling molecules. All cell types originate from stem cells in the neck region of the gland, before migrating and differentiating to assume their characteristic positions and functions. Endocrine and local paracrine mediators are of crucial importance for maintaining structural and functional integrity of the epithelium, in the face of a hostile luminal environment. The first such mediator to be recognized, the hormone gastrin, was identified over a century ago and is now established as the major physiological stimulant of gastric acid secretion. Recent studies, including those using mice that overexpress or lack the gastrin gene, suggest a number of previously unrecognized roles for this hormone in the regulation of cellular proliferation, migration and differentiation. This review focuses on the identification of hitherto unsuspected gastrin-regulated genes and discusses the paracrine cascades that contribute to the maintenance of gastric epithelial architecture and secretory function. Helicobacter infection is also considered in cases where it shares targets and signalling mechanisms with gastrin. [source] miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastomaGENES, CHROMOSOMES AND CANCER, Issue 11 2010Maria Angelica Cortez Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 3, untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. © 2010 Wiley-Liss, Inc. [source] Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct,ligated rats,HEPATOLOGY, Issue 5 2005Ramón Bataller Recent evidence indicates that the renin,angiotensin system (RAS) plays a major role in liver fibrosis. Here, we investigate whether the circulatory RAS, which is frequently activated in patients with chronic liver disease, contributes to fibrosis progression. To test this hypothesis, we increased circulatory angiotensin II (Ang II) levels in rats undergoing biliary fibrosis. Saline or Ang II (25 ng/kg/h) were infused into bile duct,ligated rats for 2 weeks through a subcutaneous pump. Ang II infusion increased serum levels of Ang II and augmented bile duct ligation,induced liver injury, as assessed by elevated liver serum enzymes. Moreover, it increased the hepatic concentration of inflammatory proteins (tumor necrosis factor , and interleukin 1,) and the infiltration of CD43-positive inflammatory cells. Ang II infusion also favored the development of vascular thrombosis and increased the procoagulant activity of tissue factor in the liver. Livers from bile duct,ligated rats infused with Ang II showed increased transforming growth factor ,1 content, collagen deposition, accumulation of smooth muscle ,-actin,positive cells, and lipid peroxidation products. Moreover, Ang II infusion stimulated phosphorylation of c-Jun and p42/44 mitogen-activated protein kinase and increased proliferation of bile duct cells. In cultured rat hepatic stellate cells (HSCs), Ang II (10,8 mol/L) increased intracellular calcium and stimulated reactive oxygen species formation, cellular proliferation and secretion of proinflammatory cytokines. Moreover, Ang II stimulated the procoagulant activity of HSCs, a newly described biological function for these cells. In conclusion, increased systemic Ang II augments hepatic fibrosis and promotes inflammation, oxidative stress, and thrombogenic events. (HEPATOLOGY 2005;41:1046,1055.) [source] Growth hormone stimulates proliferation of old-aged regenerating liver through forkhead box m1bHEPATOLOGY, Issue 6 2003Katherine Krupczak-Hollis The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA-binding domain and the members of which play essential roles in cellular proliferation, differentiation, and longevity. Reduced cellular proliferation during aging is associated with a progressive decline in both growth hormone (GH) secretion and Foxm1b expression. Liver regeneration studies with 12-month-old (old-aged) transgenic mice indicated that increased hepatocyte expression of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver. GH therapy in older people has been shown to cause an increase in cellular proliferation, but the transcription factors that mediated this stimulation in proliferation remain uncharacterized. In this study, we showed that human GH administration to old-aged Balb/c mice dramatically increased both expression of Foxm1b and regenerating hepatocyte proliferation. This increase in old-aged regenerating hepatocyte proliferation was associated with elevated protein expression of Cdc25A, Cdc25B, and cyclin B1, with reduced protein levels of cyclin-dependent kinase inhibitor p27Kip1 (p27). GH treatment also was found to stimulate hepatocyte proliferation and expression of Foxm1b protein without partial hepatectomy (PHx). Furthermore, GH treatment of young Foxm1b ,/, mice failed to restore regenerating hepatocyte DNA replication and mitosis caused by Foxm1b deficiency. These genetic studies provided strong evidence that the presence of Foxm1b is essential for GH to stimulate regenerating hepatocyte proliferation. In conclusion, our old-aged liver regeneration studies show that increased Foxm1b levels are essential for GH to stimulate hepatocyte proliferation, thus providing a mechanism for GH action in the elderly. [source] Stress differentially regulates the effects of voluntary exercise on cell proliferation in the dentate gyrus of miceHIPPOCAMPUS, Issue 10 2009Timal S. Kannangara Abstract It has been well-established that cell proliferation and neurogenesis in the adult mouse dentate gyrus (DG) can be regulated by voluntary exercise. Recent evidence has suggested that the effects of voluntary exercise can in turn be influenced by environmental factors that regulate the amount of stress an animal is exposed to. In this study, we use bromodeoxyuridine and proliferating cell nuclear antigen immunohistochemistry to show that voluntary exercise produces a significant increase in cell proliferation in the adult mouse DG in both isolated and socially housed mice. This effect on proliferation translates into an increase in neurogenesis and neuronal branching of new neurons in the mice that exercised. Although social condition did not regulate proliferation in young adult mice, an effect of social housing could be observed in mice exposed to acute restraint stress. Surprisingly, only exercising mice housed in isolated conditions showed an increase in cellular proliferation following restraint stress, whereas socially housed, exercising mice, failed to show a significant increase in proliferation. These findings indicate that social housing may increase the effects of any stressful episodes on hippocampal neurogenesis in the mouse DG. © 2008 Wiley-Liss, Inc. [source] Carcinomas arising in multilocular thymic cysts of the neck: a clinicopathological study of three casesHISTOPATHOLOGY, Issue 1 2004C A Moran Aims :,To report three cases of primary carcinoma of the neck arising in multilocular thymic cysts (MTC). Methods and results :,The patients were three men aged 47, 50 and 52 years who presented with a painless neck mass of several weeks' duration. The patients had no history of previous surgical procedures or of malignancy elsewhere. The tumours in all three patients were located on the right lateral side of the neck; all patients underwent complete surgical resection of the mass. Grossly, the tumours were cystic and measured between 20 and 30 mm in greatest diameter. Histologically, the tumours showed cyst walls lined by squamous epithelium. The cyst walls contained prominent germinal centres with lymphoid hyperplasia, cholesterol cleft granulomas, and scattered keratinized structures reminiscent of Hassall's corpuscles. In addition, a neoplastic cellular proliferation composed of round to oval cells arranged in sheets and originating from the lining of the cystic structures was present. The neoplastic cells showed moderate amounts of eosinophilic cytoplasm, round nuclei, and, in some areas, prominent nucleoli. Mitotic figures were easily found, and cellular pleomorphism was present in several areas. In two cases the tumours showed features of basaloid carcinoma of the thymus, while in one case the pattern was that of squamous cell carcinoma. Immunohistochemical studies for keratin showed a strong positive reaction in the tumour cells, while leucocyte common antigen strongly stained the lymphoid background. Follow-up information obtained in two patients showed them to be alive 6 months after initial diagnosis. One patient was lost to follow-up. Conclusion :,The cases described here represent an unusual variant of carcinoma arising in multilocular thymic cyst in the neck region. [source] Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cellsINTERNATIONAL JOURNAL OF CANCER, Issue 9 2007Bolin Liu Abstract Receptor tyrosine kinase activity is essential for erbB2 (HER2/neu) promotion of breast carcinogenesis, metastasis and therapeutic resistance. erbB2 kinase can be activated by dimerization with another erbB receptor, most of which bind ligands. Of these, the erbB2/erbB3 heterodimer is the most potent oncogenic complex. erbB2 reportedly requires erbB3 to promote cellular proliferation, although this may occur without changes in erbB2 tyrosine kinase activity in some model systems. Our investigations focus on the role(s) of erbB3 in erbB2-associated kinase activity and tamoxifen resistance. Using tumor-derived cell lines from wild type rat c- neu transgenic mice and human breast cancers, we demonstrate that erbB3 plays a critical role in the activation of erbB2 tyrosine kinase activity and erbB2-associated tumorigenesis. Mechanistically, downregulation of erbB3 by specific siRNA reduces erbB2 tyrosine phosphorylation, decreases the PI-3K/Akt signaling, and inhibits mammary/breast cancer cell proliferation and colony formation. Specific erbB3 siRNA sensitizes erbB2 transfected MCF-7 cells (MCF-7/erbB2) to tamoxifen-associated inhibition of both cell growth and colony formation and enhances tamoxifen-induced apoptosis, in contrast to control siRNA transfected MCF-7/erbB2 cells which are tamoxifen-resistant. Our data indicates that erbB2/erbB3 heterodimerization is a prerequisite for erbB2 tyrosine kinase activation in mammary/breast cancer cells and that downregulation of erbB3 inhibits erbB2-associated procarcinogenic activity via inactivation of the PI-3K/Akt pathway. Furthermore, erbB3 also contributes to erbB2-mediated tamoxifen resistance and therefore may be a clinically relevant therapeutic target in addition to erbB2. © 2007 Wiley-Liss, Inc. [source] Transgenic expression of CCK2 receptors sensitizes murine pancreatic acinar cells to carcinogen-induced preneoplastic lesions formationINTERNATIONAL JOURNAL OF CANCER, Issue 1 2005Anne Mathieu Abstract In humans, initial events of pancreatic carcinogenesis remain unknown, and the question of whether this cancer, which has a ductal phenotype, exclusively arises from duct cells has been raised. Previous studies have demonstrated that transgenic expression of the CCK2 receptor in acinar cells of ElasCCK2 mice plays a role in the development of pancreatic neoplasia. The aim of our study was to examine initial steps of carcinogenesis in ElasCCK2 mice, adding a supplementary defect by using a chemical carcinogen, azaserine. Results of posttreatment sequential immunohistochemical examinations and quantifications demonstrate that mice responded to azaserine. Transition of acinar cells into duct-like cells expressing Pdx1 and gastrin, as well as proliferation of acinar cells, were transiently observed in both transgenic and control mice. The carcinogen also induced formation of preneoplastic lesions, adenomas, exhibiting properties of autonomous growth. Importantly, expression of the CCK2 receptor increased the susceptibility of pancreas to azaserine. Indeed, treated ElasCCK2 mice exhibited larger areas of pancreatic acinar-ductal transition, increased cellular proliferation as well as larger adenomas areas vs. control mice. These amplified responses may be related to auto/paracrine stimulation of CCK2 receptor by gastrin expressed in newly formed duct-like cells. Our results demonstrate that activation of CCK2 receptor and azaserine result in cumulative effects to favor the emergence of a risk situation that is a potential site for initiation of carcinogenesis. © 2005 Wiley-Liss, Inc. [source] In vitro and in vivo antitumor effect of 2-methoxyestradiol on human melanomaINTERNATIONAL JOURNAL OF CANCER, Issue 5 2004Judit Dobos Abstract 2-methoxyestradiol (2ME2) is an endogenous metabolite of estradiol with estrogen-receptor-independent antitumor and antiangiogenic activity. We examined the effects of 2ME2 on the cellular proliferation of 8 human melanoma cell lines. We show that 2ME2 inhibited cell proliferation by inducing apoptosis and an arrest in the G2/M phase, and the mechanism of action involved microtubules, mitochondrial damage and caspase activation. In male SCID mice, 2ME2 was effective in reducing primary tumor weight and the number of liver metastases after intrasplenic injection of human melanoma cells. In the metastases, we found a significantly higher rate of apoptotic cells after 2ME2 treatment. These findings on the antitumor effect of 2ME2 in cell culture as well as in an animal model may have implications for designing alternative treatment options for patients with advanced malignant melanoma. © 2004 Wiley-Liss, Inc. [source] Cell proliferation and cell cycle control: a mini reviewINTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 12 2004C.H. Golias Summary Tumourigenesis is the result of cell cycle disorganisation, leading to an uncontrolled cellular proliferation. Specific cellular processes-mechanisms that control cell cycle progression and checkpoint traversation through the intermitotic phases are deregulated. Normally, these events are highly conserved due to the existence of conservatory mechanisms and molecules such as cell cycle genes and their products: cyclins, cyclin dependent kinases (Cdks), Cdk inhibitors (CKI) and extra cellular factors (i.e. growth factors). Revolutionary techniques using laser cytometry and commercial software are available to quantify and evaluate cell cycle processes and cellular growth. S-phase fraction measurements, including ploidy values, using histograms and estimation of indices such as the mitotic index and tumour-doubling time indices, provide adequate information to the clinician to evaluate tumour aggressiveness, prognosis and the strategies for radiotherapy and chemotherapy in experimental researches. [source] Age-related histopathological lesions in the Mongolian gerbil ventral prostate as a good model for studies of spontaneous hormone-related disordersINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2008Silvana Gisele Pegorin Campos Summary The Meriones unguiculatus (Mongolian) gerbil has demonstrated significant prostatic responses to hormonal treatments, and to drugs against human prostatic hyperplasia Spontaneous neoplasia develops in the older animals. Thirty gerbils (age 18 months) were divided into non-affected and prostatic lesion bearers and the prostate lesions were evaluated morphologically, immunohistochemically and quantitatively. The most frequent changes were in epithelial sites and, namely prostatic intraepithelial neoplasias, microinvasive carcinomas and adenocarcinomas. In the stromal compartment, cellular hyperplasia, when verified, was always associated with the sites of anomalous epithelium. Additionally, larger deposition of collagen fibrils, generating stromal fibrosis, was found in all the old gerbils analysed. The quantitative analysis showed that prostatic tissue proportions differed in altered areas, being specific for each lesion type. Isolated nuclear and nucleolar parameters were not effective in diagnosing the malign potential of lesions. However, the cellular proliferation and death indexes indicated larger cellular turnover in invasive lesions such as carcinomas. With these analyses, it could be verified that old gerbils present high propensity to develop spontaneous prostate changes and this may aid in a better understanding of the biological behaviour of human prostate cancer. [source] Goitrogenic activity of p -coumaric acid in ratsJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2003Fatima Khelifi-Touhami Abstract The effects of three natural phenolic acids (caffeic, ferulic, and p -coumaric) on the rat thyroid gland were examined in a 3-week oral-treatment study. Forty male Wistar albino rats, divided into groups of 10 rats each and fed iodine-rich diet, were administered by gastrointestinal tube saline (control), caffeic acid, ferulic acid, or p -coumaric acid at a dose level of 0.25 ,mol/kg/day for 3 weeks. The mean absolute and relative thyroid weights in caffeic, ferulic, or p -coumaric acid groups were significantly increased to 127 and 132%, 146 and 153%, or 189 and 201% compared to control value, respectively. Histological examination of the thyroids of p -coumaric acid group revealed marked hypertrophy and/or hyperplasia of the follicles. Caffeic or ferulic groups showed slight to moderate thyroid gland enlargement. Thyroid lesions in p -coumaric acid group were associated with significant increases in cellular proliferation as indicated by [3H]thymidine incorporation. In addition, the goitrogenic effect of p -coumaric acid was further confirmed by significant decreases (50%) in serum tri-iodothyronine (T3) and thyroxine (T4), and a parallel increase (90%) in serum thyroid stimulating hormone (TSH) compared to control group. These results indicate that administration of p -coumaric acid at relatively high doses induces goiter in rats. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:324,328, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10094 [source] |