Cellular Pathways (cellular + pathway)

Distribution by Scientific Domains


Selected Abstracts


In vivo analysis reveals different apoptotic pathways in pre- and postmigratory cerebellar granule cells of rabbit

DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2004
Laura Lossi
Abstract Naturally occurring neuronal death (NOND) has been described in the postnatal cerebellum of several species, mainly affecting the cerebellar granule cells (CGCs) by an apoptotic mechanism. However, little is known about the cellular pathway(s) of CGC apoptosis in vivo. By immunocytochemistry, in situ detection of fragmented DNA, electron microscopy, and Western blotting, we demonstrate here the existence of two different molecular mechanisms of apoptosis in the rabbit postnatal cerebellum. These two mechanisms affect CGCs at different stages of their maturation and migration. In the external granular layer, premigratory CGCs undergo apoptosis upon phosphorylation of checkpoint kinase 1 (Chk1), and hyperphosphorylation of retinoblastoma protein. In postmigratory CGCs within the internal granular layer, caspase 3 and to a lesser extent 7 and 9 are activated, eventually leading to poly-ADP-ribose polymerase-1 (PARP-1) cleavage and programmed cell death. We conclude that NOND of premigratory CGCs is linked to activation of DNA checkpoint and alteration of normal cell cycle, whereas in postmigratory CGCs apoptosis is, more classically, dependent upon caspase 3 activation. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 437,452, 2004 [source]


AMP-activated protein kinase: role in metabolism and therapeutic implications

DIABETES OBESITY & METABOLISM, Issue 6 2006
Greg Schimmack
AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases. [source]


Effects of sulfonylureas on mitochondrial ATP-sensitive K+ channels in cardiac myocytes: implications for sulfonylurea controversy

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2006
Toshiaki Sato
Abstract Background Mitochondrial ATP-sensitive K+ (mitoKATP) channel plays a key role in cardioprotection. Hence, a sulfonylurea that does not block mitoKATP channels would be desirable to avoid damage to the heart. Accordingly, we examined the effects of sulfonylureas on the mitoKATP channel and mitochondrial Ca2+ overload. Methods Flavoprotein fluorescence in rabbit ventricular myocytes was measured to assay mitoKATP channel activity. The mitochondrial Ca2+ concentration was measured by loading cells with rhod-2. Results The mitoKATP channel opener diazoxide (100 µM) reversibly increased flavoprotein oxidation to 31.8 ± 4.3% (n = 5) of the maximum value induced by 2,4-dinitrophenol. Glimepiride (10 µM) alone did not oxidize the flavoprotein, and the oxidative effect of diazoxide was unaffected by glimepiride (35.4 ± 3.2%, n = 5). Similarly, the diazoxide-induced flavoprotein oxidation was unaffected both by gliclazide (10 µM) and by tolbutamide (100 µM). Exposure to ouabain (1 mM) for 30 min produced mitochondrial Ca2+ overload, and the intensity of rhod-2 fluorescence increased to 197.4 ± 7.2% of baseline (n = 11). Treatment with diazoxide significantly reduced the ouabain-induced mitochondrial Ca2+ overload (149.6 ± 5.1%, n = 11, p < 0.05 versus ouabain alone), and the effect was antagonized by the mitoKATP channel blocker 5-hydroxydecanoate (189.8 ± 27.8%, n = 5) and glibenclamide (193.1 ± 7.7%, n = 8). On the contrary, cardioprotective effect of diazoxide was not abolished by glimepiride (141.8 ± 7.8%, n = 6), gliclazide (139.0 ± 9.4%, n = 5), and tolbutamide (141.1 ± 4.5%, n = 7). Conclusions Our results indicate that glimepiride, gliclazide, and tolbutamide have no effect on mitoKATP channel, and do not abolish the cardioprotective effects of diazoxide. Therefore, these sulfonylureas, unlike glibenclamide, do not interfere with the cellular pathways that confer cardioprotection. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Proteomic analysis of osteogenic differentiation of dental follicle precursor cells

ELECTROPHORESIS, Issue 7 2009
Christian Morsczeck
Abstract Recently, there has been an increased interest in unravelling the molecular mechanisms and cellular pathways controlling the differentiation and proliferation of human stem cell lines. Proteome analysis has proven to be an effective approach to comprehensive analysis of the regulatory network of differentiation. In the present study we applied 2-DE combined with capillary-LC-MS/MS analysis to profile differentially regulated proteins upon differentiation of dental follicle precursor cells (DFPCs). Out of 115 differentially regulated proteins, glutamine synthetase, lysosomal proteinase cathepsin B proteins, plastin 3 T-isoform, beta-actin, superoxide dismutases, and transgelin were found to be highly up-regulated, whereas cofilin-1, pro-alpha 1 collagen, destrin, prolyl 4-hydrolase and dihydrolipoamide dehydrogenase were found to be highly down-regulated. The group of up-regulated proteins is associated with actin-bundling and defence against oxidative cellular stress, whereas down-regulated proteins were associated with collagen biosynthesis. Bioinformatic analyses of the entire data set confirmed these findings that represent significant steps towards the understanding of DFPC differentiation. The bioinformatic analyses suggest that proteins associated with cell cycle progression and protein metabolism were down-regulated and proteins involved in catabolism, cell motility and biological quality were up-regulated. These results display the general physiological state of DFPCs before and after osteogenic differentiation. We also identified regulatory proteins, such as the transcription factors TP53 and Sp-1, associated with the differentiation process. Further studies will investigate the impact of identified regulatory proteins for cell proliferation and osteogenic differentiation in DFPCs. [source]


The therapeutic potential of the proteasome in leukaemia,

HEMATOLOGICAL ONCOLOGY, Issue 2 2008
Scott Marshall McCloskey
Abstract Many cellular processes converge on the proteasome, and its key regulatory role is increasingly being recognized. Proteasome inhibition allows the manipulation of many cellular pathways including apoptotic and cell cycle mechanisms. The proteasome inhibitor bortezomib has enhanced responses in newly diagnosed patients with myeloma and provides a new line of therapy in relapsed and refractory patients. Malignant cells are more sensitive to proteasome inhibition than normal haematopoietic cells. Proteasome inhibition enhances many conventional therapies and its role in leukaemia is promising. Copyright © 2008 John Wiley & Sons, Ltd. [source]


The MHC class I antigen presentation pathway: strategies for viral immune evasion

IMMUNOLOGY, Issue 2 2003
Eric W. Hewitt
Summary Presumably because of the selective pressure exerted by the immune system, many viruses have evolved proteins that interfere with antigen presentation by major histocompatibility complex (MHC) class I molecules. These viruses utilize a whole variety of ingenious strategies to inhibit the MHC class I pathway. Viral proteins have been characterized that exploit bottlenecks in the MHC class I pathway, such as peptide translocation by the transporter associated with antigen processing. Alternatively, viral proteins can cause the degradation or mislocalization of MHC class I molecules. This is often achieved by the subversion of the host cell's own protein degradation and trafficking pathways. As a consequence elucidation of how these viral proteins act to subvert host cell function will continue to give important insights not only into virus,host interactions but also the function and mechanism of cellular pathways. [source]


Genomic analysis of acute leukemia

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 4 2009
C. G. MULLIGHAN
Summary Acute leukemia is the commonest childhood cancer and a major cause of morbidity from hematologic malignancies in adults. Acute lymphoblastic leukemia (ALL) is commonest in children, and acute myeloid leukemia (AML) is more frequent in adults. Apart from childhood ALL, the prognosis of acute leukemia is suboptimal, with many patients experiencing relapse, which carries a poor prognosis, or toxicities from nonspecific therapies. Recent years have witnessed great interest in the application of high-resolution, genome wide approaches to the study of acute leukemia. These studies have identified multiple novel genetic alterations targeting critical cellular pathways that contribute to leukemogenesis, including alterations of genes regulting lymphoid development, tumor suppressors, apoptosis regulators, and oncogenes. These studies have also delineated novel genetic alterations that are associated with prognosis, and have demonstrated substantial evolution in patterns of genetic alterations from diagnosis to relapse, indicating that specific genetic changes determine resistance to therapy in ALL. Overall, fewer recurring alterations have been identified in AML. These studies have demonstrated the power of genome-wide approaches to identify new lesions in acute leukemia, and suggest that ongoing genomic analyses, including deep resequencing and epigenetic analysis, will continue to yield novel, clinically relevant insights into the pathogenesis of this disease. [source]


Bone Regeneration Is Regulated by Wnt Signaling,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2007
Jae-Beom Kim
Abstract Tissue regeneration is increasingly viewed as reactivation of a developmental process that, when misappropriated, can lead to malignant growth. Therefore, understanding the molecular and cellular pathways that govern tissue regeneration provides a glimpse into normal development as well as insights into pathological conditions such as cancer. Herein, we studied the role of Wnt signaling in skeletal tissue regeneration. Introduction: Some adult tissues have the ability to regenerate, and among these, bone is one of the most remarkable. Bone exhibits a persistent, lifelong capacity to reform after injury, and continual bone regeneration is a prerequisite to maintaining bone mass and density. Even slight perturbations in bone regeneration can have profound consequences, as exemplified by conditions such as osteoporosis and delayed skeletal repair. Here, our goal was to determine the role of Wnts in adult bone regeneration. Materials and Methods: Using TOPgal reporter mice, we found that damage to the skeleton instigated Wnt reporter activity, specifically at the site of injury. We used a skeletal injury model to show that Wnt inhibition, achieved through adenoviral expression of Dkk1 in the adult skeleton, prevented the differentiation of osteoprogenitor cells. Results: As a result, injury-induced bone regeneration was reduced by 84% compared with controls. Constitutive activation of the Wnt pathway resulting from a mutation in the Lrp5 Wnt co-receptor results in high bone mass, but our experiments showed that this same point mutation caused a delay in bone regeneration. In these transgenic mice, osteoprogenitor cells in the injury site were maintained in a proliferative state and differentiation into osteoblasts was delayed. Conclusions: When considered together, these data provide a framework for understanding the roles of Wnt signaling in adult bone regeneration and suggest a feasible approach to treating clinical conditions where enhanced bone formation is desired. [source]


Overexpression of Par-4 enhances thapsigargin-induced apoptosis via down-regulation of XIAP and inactivation of Akt in human renal cancer cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008
Tae-Jin Lee
Abstract The prostate-apoptosis-response-gene-4 (Par-4) protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor-mediated cell death pathways. We found that overexpressing Par-4 by stable transfection sensitizes Caki cells to induction of apoptosis by TRAIL and drugs that induce endoplasmic reticulum (ER) stress [thapsigargin (TG), tunicamycin (TU) and etoposide]. Ectopic expression of Par-4 is associated with decreased levels of XIAP protein in TG-treated cells, caused in part by XIAP protein instability and caspase activation. Levels of phospho-Akt are decreased in Caki/Par-4 cells to a significantly greater extent than in Caki/Vector cells by treatment with TG, and this is in turn associated with decreased levels of phospho-PDK1, the kinase upstream of Akt. In conclusion, we provide evidence that ectopic expression of Par-4 sensitizes Caki cells to TG and that XIAP protein instability and inactivation of Akt are important in cellular pathways affected by Par-4. J. Cell. Biochem. 103: 358,368, 2008. © 2007 Wiley-Liss, Inc. [source]


Computational method to assign microbial genes to pathways

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue S37 2001
Matteo Pellegrini
Abstract We present techniques that mine fully sequenced microbial genomes for functional relationships between genes. We show that genes related by one of four techniques are more likely to belong to the same cellular pathways. Furthermore, we demonstrate that the pathway of an uncharacterized gene may be inferred from those of its functionally related partners. Therefore, we are now able to assign most of the genes within bacteria to cellular pathways. J. Cell. Biochem. Suppl. 37: 106,109, 2001. © 2002 Wiley-Liss, Inc. [source]


The involvement of human RECQL4 in DNA double-strand break repair

AGING CELL, Issue 3 2010
Dharmendra Kumar Singh
Summary Rothmund,Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas. The precise role of RECQL4 in cellular pathways is largely unknown; however, recent evidence suggests its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double-strand break (DSB) repair. The results show that RECQL4-deficient fibroblasts are moderately sensitive to ,-irradiation and accumulate more ,H2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB's in the RECQL4-deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy shows that RECQL4 is recruited early to laser-induced DSBs and remains for a shorter duration than WRN and BLM, indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with ,H2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N-terminus domain between amino acids 363,492, which shares no homology to recruitment domains of WRN and BLM to the DSBs. Further, the recruitment of RECQL4 to laser-induced DNA damage is independent of functional WRN, BLM or ATM proteins. These results suggest distinct cellular dynamics for RECQL4 protein at the site of laser-induced DSB and that it might play important roles in efficient repair of DSB's. [source]


Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer's disease fibroblasts

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2003
Jennifer L. Mazzola
Abstract The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated both in age-related neurodegenerative disease and in apoptosis. Previous in vitro studies suggest an interaction between GAPDH and the ,-amyloid precursor protein (,-APP), a protein directly involved in Alzheimer's disease (AD). New studies indicate that GAPDH is a multidimensional protein with diverse membrane, cytoplasmic, and nuclear functions; each is distinct from its role in glycolysis. The nuclear functions of GAPDH include a role in apoptosis that requires its translocation to the nucleus. Accordingly, ,-APP,GAPDH interactions, altering GAPDH structure in vivo, may affect energy generation, inducing hypometabolism, a characteristic AD phenotype. Because GAPDH is a multifunctional protein, pleiotropic effects may also occur in a variety of fundamental cellular pathways in AD cells. This may include unique GAPDH,RNA interactions. We report here the identification of a high-molecular-weight (HMW) GAPDH species present exclusively in the postnuclear fraction of AD cells. The latter is characterized by reduced GAPDH activity. The HMW GAPDH species was not detected in postnuclear age-matched control (AMC) fractions nor in AD whole-cell preparations. Each is characterized by normal GAPDH activity. By definition, the preparation of whole-cell extracts entails the destruction of subcellular structure. The latter findings indicate that the dissociation of the GAPDH protein from the HMW species restores its enzymatic activity. Thus, these results reveal a new, unique intracellular phenotype in AD cells. The functional consequences of subcellular alteration in GAPDH structure in AD cells are considered. © 2002 Wiley-Liss, Inc. [source]


The linkage between cell wall metabolism and fruit softening: looking to the future

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 8 2007
Ariel R Vicente
Abstract The softening that accompanies ripening of commercially important fruits exacerbates damage incurred during shipping and handling and increases pathogen susceptibility. Thus, postharvest biologists have studied fruit softening to identify ways to manage ripening and optimise fruit quality. Studies, generally based on the premise that cell wall polysaccharide breakdown causes ripening-associated softening, have not provided the insights needed to genetically engineer, or selectively breed for, fruits whose softening can be adequately controlled. Herein it is argued that a more holistic view of fruit softening is required. Polysaccharide metabolism is undoubtedly important, but understanding this requires a full appreciation of wall structure and how wall components interact to provide strength. Consideration must be given to wall assembly as well as to wall disassembly. Furthermore, the apoplast must be considered as a developmentally and biochemically distinct, dynamic ,compartment', not just the location of the cell wall structural matrix. New analytical approaches for enhancing the ability to understand wall structure and metabolism are discussed. Fruit cells regulate their turgor pressure as well as cell wall integrity as they ripen, and it is proposed that future studies of fruit softening should include attempts to understand the bases of cell- and tissue-level turgor regulation if the goal of optimising softening control is to be reached. Finally, recent studies show that cell wall breakdown provides sugar substrates that fuel other important cellular pathways and processes. These connections must be explored so that optimisation of softening does not lead to decreases in other aspects of fruit quality. Copyright © 2007 Society of Chemical Industry [source]


Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 2 2010
Gail C. Donegan
Abstract Esterified hyaluronan scaffolds offer significant advantages for tissue engineering. They are recognized by cellular receptors, interact with many other extracellular matrix proteins and their metabolism is mediated by intrinsic cellular pathways. In this study differences in the viability and structural integrity of vascular tissue models cultured on hyaluronan scaffolds under laminar flow conditions highlighted potential differences in the biodegradation kinetics, processes and end-products, depending on the culture environment. Critical factors are likely to include seeding densities and the duration and magnitude of applied biomechanical stress. Proteomic evaluation of the timing and amount of remodelling protein expression, the resulting biomechanical changes arising from this response and metabolic cell viability assay, together with examination of tissue morphology, were conducted in vascular tissue models cultured on esterified hyaluronan felt and PTFE mesh scaffolds. The vascular tissue models were derived using complete cell sheets derived from harvested and expanded umbilical cord vein cells. This seeding method utilizes high-density cell populations from the outset, while the cells are already supported by their own abundant extracellular matrix. Type I and type IV collagen expression in parallel with MMP-1 and MMP-2 expression were monitored in the tissue models over a 10 day culture period under laminar flow regimes using protein immobilization technologies. Uniaxial tensile testing and scanning electron microscopy were used to compare the resulting effects of hydrodynamic stimulation upon structural integrity, while viability assays were conducted to evaluate the effects of shear on metabolic function. The proteomic results showed that the hyaluronan felt-supported tissues expressed higher levels of all remodelling proteins than those cultured on PTFE mesh. Overall, a 21% greater expression of type I collagen, 24% higher levels of type IV collagen, 24% higher levels of MMP-1 and 34% more MMP-2 were observed during hydrodynamic stress. This was coupled with a loss of structural integrity in these models after the introduction of laminar flow, as compared to the increases in all mechanical properties observed in the PTFE mesh-supported tissues. However, under flow conditions, the hyaluronan-supported tissues showed some recovery of the viability originally lost during static culture conditions, in contrast to PTFE mesh-based models, where initial gains were followed by a decline in metabolic viability after applied shear stress. Proteomic, cell viability and mechanical testing data emphasized the need for extended in vitro evaluations to enable better understanding of multi-stage remodelling and reparative processes in tissues cultured on biodegradable scaffolds. This study also highlighted the possibility that in high-density tissue culture with a biodegradable component, dynamic conditions may be more conducive to optimal tissue development than the static environment because they facilitate the efficient removal of high concentrations of degradation end-products accumulating in the pericellular space. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Decidualization and implantation: Embryo-uterine bioinformatics at work

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2001
Abraham L. Kierszenbaum
The implantation of the blastocyst into a nurturing endometrium involves two overlapping steps: 1. The blastocyst-endometrial luminal epithelial attachment. 2. The decidualization of the endometrial stroma. An intriguing question is how does the blastocyst identify the uterine implantation site. Current research is focused on hypothetical soluble signaling molecules released by the blastocyst for conditioning a discrete uterine luminal epithelial domain for implantation. A still unresolved issue is the functional significance of receptor autophosphorylation following binding of uterine epithelial cell-derived heparin-binding epidermal growth factor-like growth factor to the epidermal growth factor receptor on trophoectodermic cell surfaces. With recent results hinting at the role of signaling proteins associated with the bone morphogenetic protein, fibroblast growth factor, WNT and hedgehog families to enable embryo implantation, the dynamics of uterine-embryo interaction becomes linked to fundamental cellular pathways of growth, differentiation and apoptosis. Mol. Reprod. Dev. 59:123,125, 2001. © 2001 Wiley-Liss, Inc. [source]


Proteomic analysis of cells in the early stages of herpes simplex virus type-1 infection reveals widespread changes in the host cell proteome

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 15 2009
Robin Antrobus
Abstract During infection by herpes simplex virus type-1 (HSV-1) the host cell undergoes widespread changes in gene expression and morphology in response to viral replication and release. However, relatively little is known about the specific proteome changes that occur during the early stages of HSV-1 replication prior to the global damaging effects of virion maturation and egress. To investigate pathways that may be activated or utilised during the early stages of HSV-1 replication, 2-DE and LC-MS/MS were used to identify cellular proteome changes at 6,h post infection. Comparative analysis of multiple gels representing whole cell extracts from mock- and HSV-1-infected HEp-2 cells revealed a total of 103 protein spot changes. Of these, 63 were up-regulated and 40 down-regulated in response to infection. Changes in selected candidate proteins were verified by Western blot analysis and their respective cellular localisations analysed by confocal microscopy. We have identified differential regulation and modification of proteins with key roles in diverse cellular pathways, including DNA replication, chromatin remodelling, mRNA stability and the ER stress response. This work represents the first global comparative analysis of HSV-1 infected cells and provides an important insight into host cell proteome changes during the early stages of HSV-1 infection. [source]


A study of Streptococcus thermophilus proteome by integrated analytical procedures and differential expression investigations

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2006
Simona Arena
Abstract Streptococcus thermophilus is a Gram-positive bacterium belonging to the group of lactic acid bacteria, among which several genera play an essential role in manufacture of food products. Recently, a genomic consortium sequenced and annotated its entire genome, which has been demonstrated to contain 1900 coding sequences. In this study, we have revealed the expression products of almost 200 different genes using a proteomic strategy combining 2-DE plus MALDI-TOF PMF and differential 1-DE plus ,LC-ESI-IT-MS/MS. Thus, a number of cellular pathways related to important physiological processes were described at the proteomic level. Almost 50 genes were related to multiple electrophoretic species, whose heterogeneity was mainly due to variability in pI values. A 2-DE reference map obtained for lactose-grown cells was compared with those obtained after heat, cold, acid, oxidative and starvation stresses. Protein up/down-regulation measurements demonstrated that adaptation to different environmental challenges may involve the contribution of unique as well as combined physiological mechanisms. Common regulatory sites in the promoter region of genes whose expression was induced after stress were identified. These results provide a better comprehension of biochemical processes related to stress resistance in S. thermophilus, allowing defining the molecular bases of adaptative responses or markers for the identification of strains with potential industrial applications. [source]


Islet Allograft Rejection by Contact-Dependent CD8+ T cells: Perforin and FasL Play Alternate but Obligatory Roles,

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2007
M. Sleater
Though CD8+ T lymphocytes are important cellular mediators of islet allograft rejection, their molecular mechanism of rejection remains unidentified. Surprisingly, while it is generally assumed that CD8+ T cells require classic cytotoxic mechanisms to kill grafts in vivo, neither perforin nor FasL (CD95L) are required for acute islet allograft rejection. Thus, it is unclear whether such contact-dependent cytotoxic pathways play an essential role in islet rejection. Moreover, both perforin and CD95L have been implicated in playing roles in peripheral tolerance, further obscuring the role of these effector pathways in rejection. Therefore, we determined whether perforin and/or FasL (CD95L) were required by donor MHC-restricted (,direct') CD8+ T cells to reject islet allografts in vivo. Islet allograft rejection by primed, alloreactive CD8+ T cells was examined independently of other lymphocyte subpopulations via adoptive transfer studies. Individual disruption of T-cell-derived perforin or allograft Fas expression had limited impact on graft rejection. However, simultaneous disruption of both pathways prevented allograft rejection in most recipients despite the chronic persistence of transferred T cells at the graft site. Thus, while there are clearly multiple cellular pathways of allograft rejection, perforin and FasL comprise alternate and necessary routes of acute CD8+ T-cell-mediated islet allograft rejection. [source]


Structure and function of GlmU from Mycobacterium tuberculosis

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2009
Zhening Zhang
Antibiotic resistance is a major issue in the treatment of infectious diseases such as tuberculosis. Existing antibiotics target only a few cellular pathways and there is an urgent need for antibiotics that have novel molecular mechanisms. The glmU gene is essential in Mycobacterium tuberculosis, being required for optimal bacterial growth, and has been selected as a possible drug target for structural and functional investigation. GlmU is a bifunctional acetyltransferase/uridyltransferase that catalyses the formation of UDP-GlcNAc from GlcN-1-P. UDP-GlcNAc is a substrate for two important biosynthetic pathways: lipopolysaccharide and peptidoglycan synthesis. The crystal structure of M. tuberculosis GlmU has been determined in an unliganded form and in complex with GlcNAc-1-P or UDP-GlcNAc. The structures reveal the residues that are responsible for substrate binding. Enzyme activities were characterized by 1H NMR and suggest that the presence of acetyl-coenzyme A has an inhibitory effect on uridyltransferase activity. [source]


SERCA function declines with age in adrenergic nerves from the superior cervical ganglion

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 5-6 2000
W. J. Pottorf
1 Intracellular calcium is a universal second messenger integrating numerous cellular pathways. An age-related breakdown in the mechanisms controlling [Ca2+]i homeostasis could contribute to neuronal degeneration. One component of neuronal calcium regulation believed to decline with age is the function of sarco/endoplasmic reticulum calcium ATPase (SERCA) pumps. 2 Therefore we investigated the impact of age on the capacity of SERCA pumps to control high (68 m M) [K+]-evoked [Ca2+]i -transients in acutely dissociated superior cervical ganglion (SCG) cells from 6- and 20-month-old Fisher-344 rats. Calcium transients were measured by fura-2 microfluorometry in the presence of vanadate (0.1 ,M) to selectively block plasma membrane calcium ATPase (PMCA) pumps, dinitrophenol (100 ,M) to block mitochondrial calcium uptake and extracellular sodium replaced with tetraethylammonium to block Na+/Ca2+ -exchanger, thus forcing the neuronal cells to rely on SERCA uptake to control [Ca2+]i homeostasis. 3 In the presence of these calcium buffering blockers, the rate of recovery of [Ca2+]i was significantly slower and time to recover to approximately 90% of resting [Ca2+]i was significantly greater in SCG cells from old (20 months) compared with young (6 months) animals. 4 This age-related change in the recovery phase of [K+]-evoked [Ca2+]i -transients could not be explained by differences in the sensitivity of SCG cells to the calcium buffering blockers, as no age-related difference in basal [Ca2+]i was observed. 5 These studies illustrate that when rat SCG cells are forced to rely on SERCAs to buffer [K+]-evoked [Ca2+]i -transients, an age-related decline in SERCA function is revealed. Such age-related declines in calcium regulation coupled with neuronal sensitivity to calcium overload underscore the importance of understanding the components of [Ca2+]i homeostasis and the functional compensation that may occur with advancing age. [source]


Regulation of targeted gene repair by intrinsic cellular processes

BIOESSAYS, Issue 2 2009
Julia U. Engstrom
Targeted gene alteration (TGA) is a strategy for correcting single base mutations in the DNA of human cells that cause inherited disorders. TGA aims to reverse a phenotype by repairing the mutant base within the chromosome itself, avoiding the introduction of exogenous genes. The process of how to accurately repair a genetic mutation is elucidated through the use of single-stranded DNA oligonucleotides (ODNs) that can enter the cell and migrate to the nucleus. These specifically designed ODNs hybridize to the target sequence and act as a beacon for nucleotide exchange. The key to this reaction is the frequency with which the base is corrected; this will determine whether the approach becomes clinically relevant or not. Over the course of the last five years, workers have been uncovering the role played by the cells in regulating the gene repair process. In this essay, we discuss how the impact of the cell on TGA has evolved through the years and illustrate ways that inherent cellular pathways could be used to enhance TGA activity. We also describe the cost to cell metabolism and survival when certain processes are altered to achieve a higher frequency of repair. [source]


Immunity to vacuolar pathogens: What can we learn from Legionella?

CELLULAR MICROBIOLOGY, Issue 11 2004
Annie L. Neild
Summary Intracellular pathogens can manipulate host cellular pathways to create specialized organelles. These pathogen-modified vacuoles permit the survival and replication of bacterial and protozoan microorganisms inside of the host cell. By establishing an atypical organelle, intracellular pathogens present unique challenges to the host immune system. To understand pathogenesis, it is important to not only investigate how these organisms create unique subcellular compartments, but to also determine how mammalian immune systems have evolved to detect and respond to pathogens sequestered in specialized vacuoles. Recent studies have identified genes in the respiratory pathogen Legionella pneumophila that are essential for establishing a unique endoplasmic reticulum-derived organelle inside of mammalian macrophages, making this pathogen an attractive model system for investigations on host immune responses that are specific for bacteria that establish vacuoles disconnected from the endocytic pathway. This review will focus on the host immune response to Legionella and highlight areas of Legionella research that should help elucidate host strategies to combat infections by intracellular pathogens. [source]


Allergic airway inflammation is exacerbated during acute influenza infection and correlates with increased allergen presentation and recruitment of allergen-specific T-helper type 2 cells

CLINICAL & EXPERIMENTAL ALLERGY, Issue 8 2004
B. J. Marsland
Summary Background Respiratory viral infections are a leading cause of the hospitalization of asthmatics, however, the cellular immunological interactions which underlie these two diseases remain elusive. Objective We sought to characterize the effect influenza viral infection has on allergic airway inflammation and to identify the cellular pathways involved. Methods We have used an ovalbumin (OVA) model of allergic airway inflammation, which involves sensitization of animals with OVA adsorbed in alum adjuvant followed by an intranasal challenge with OVA in phosphate-buffered saline. To study T cell recruitment into the lung, we adoptively transferred in vitro activated T cell receptor-transgenic T cells, which were subsequently identified by fluorescence-activated cell sorting (FACS) analysis. In addition, to study in vivo dendritic cell (DC) migration, we administered fluorescently labelled dextran and identified DCs that had phagocytosed it by FACS analysis. Results We found that different stages of influenza infection had contrasting effects upon the outcome of OVA-induced allergic airway inflammation. The allergic response against OVA was exacerbated during the acute stage of influenza infection; however, mice were protected against the development of airway eosinophilia at late time-points following infection. We investigated the mechanisms responsible for the virus-induced exacerbation and found that the response was partially independent of IL-4 and that there was increased delivery of inhaled allergens to the draining lymph node during the acute stage of the infection. In addition, virus-induced inflammation in the lung and draining lymph node resulted in the non-specific recruitment of circulating allergen-specific effector/memory cells. Conclusion In addition to virus-mediated damage to the lung and airways, influenza viral infection can also enhance unrelated local allergic responses. [source]


The ageing male reproductive tract,

THE JOURNAL OF PATHOLOGY, Issue 2 2007
N Sampson
Abstract Ageing of the male reproductive system is characterized by changes in the endocrine system, hypogonadism, erectile dysfunction and proliferative disorders of the prostate gland. Stochastic damage accumulating within ageing leads to progressive dysregulation at each level of the hypothalamic,pituitary,gonadal (HPG) axis and in local auto/paracrine interactions, thereby inducing morphological changes in reproductive target organs, such as the prostate, testis and penis. Despite age-related changes in the HPG axis, endocrine functions are generally sufficient to maintain fertility in elderly men. Ageing of the male reproductive system can give rise to clinically relevant manifestations, such as benign prostatic hyperplasia (BPH), prostate cancer (PCa) and erectile dysfunction (ED). In this review, we discuss morphological/histological changes occurring in these organs and current views and concepts of the underlying pathology. Moreover, we emphasize the molecular/cellular pathways leading to reduced testicular/penile function and proliferative disorders of the prostate gland. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]