Cellular Dysfunction (cellular + dysfunction)

Distribution by Scientific Domains


Selected Abstracts


OXIDIZED LOW-DENSITY LIPOPROTEIN INDUCES ENDOTHELIAL PROGENITOR CELL SENESCENCE, LEADING TO CELLULAR DYSFUNCTION

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 7 2004
Toshio Imanishi
SUMMARY 1.,Recent studies have revealed an association between coronary risk factors and both the number and function of bone marrow-derived endothelial progenitor cells (EPC). We investigated the effect of oxidized low-density lipoprotein (ox-LDL) on the senescence of EPC, leading to cellular dysfunction. 2.,Endothelial progenitor cells were isolated from human peripheral blood and characterized. The exposure of cultured EPC to ox-LDL (10 µg/mL) significantly accelerated the rate of senescence compared with control during 20 days in culture as determined by acidic ,-galactosidase staining. Oxidized LDL-induced EPC senescence was significantly inhibited by pretreatment with either lectin-like ox-LDL receptor-1 (LOX-1) antibody (Ab) or atorvastatin (P < 0.01). 3.,Because cellular senescence is critically influenced by telomerase, which elongates telomeres, we measured telomerase activity using a polymerase chain reaction,ELISA-based assay. Oxidized LDL significantly diminished telomerase activity to approximately 50%, an effect that was significantly abolished by pretreatment with either LOX-1 Ab or atorvastatin (P < 0.01). 4.,We examined whether ox-LDL-induced EPC senescence translates into EPC dysfunction. An MTS assay disclosed an inhibitory effect of ox-LDL on EPC proliferation. In a Matrigel assay, EPC treated with ox-LDL were less likely to participate in network fomation compared with controls. 5.,In conclusions, ox-LDL accelerates the onset of EPC senescence, which may be related to telomerase inactivation. Oxidized LDL-induced EPC senescence leads to the impairment of proliferative capacity and network formation. [source]


Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesis

DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2009
Adelaide Fernandes
Abstract Elevated levels of serum unconjugated bilirubin (UCB) in the first weeks of life may lead to long-term neurologic impairment. We previously reported that an early exposure of developing neurons to UCB, in conditions mimicking moderate to severe neonatal jaundice, leads to neuritic atrophy and cell death. Here, we have further analyzed the effect of UCB on nerve cell differentiation and neuronal development, addressing how UCB may affect the viability of undifferentiated neural precursor cells and their fate decisions, as well as the development of hippocampal neurons in terms of dendritic and axonal elongation and branching, the axonal growth cone morphology, and the establishment of dendritic spines and synapses. Our results indicate that UCB reduces the viability of proliferating neural precursors, decreases neurogenesis without affecting astrogliogenesis, and increases cellular dysfunction in differentiating cells. In addition, an early exposure of neurons to UCB decreases the number of dendritic and axonal branches at 3 and 9 days in vitro (DIV), and a higher number of neurons showed a smaller growth cone area. UCB-treated neurons also reveal a decreased density of dendritic spines and synapses at 21 DIV. Such deleterious role of UCB in neuronal differentiation, development, and plasticity may compromise the performance of the brain in later life. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 [source]


Gestational diabetes affects platelet behaviour through modified oxidative radical metabolism

DIABETIC MEDICINE, Issue 1 2004
L. Mazzanti
Abstract Aims Patients with Type 1 and Type 2 diabetes mellitus show altered platelet function including decreased nitric oxide synthase (NOS) activity and increased peroxynitrite production. Gestational diabetes mellitus (GDM) is a clinical condition which is ideal for evaluating short-term effects of impaired glucose metabolism, ruling out the possibility that the platelet abnormalities are a consequence of diabetic complications. The aim of the present work was to study NO metabolism in platelets from pregnant women with GDM. The production of peroxides was also studied as it is strongly involved in peroxynitrite formation. Methods Platelet NOS activity and peroxynitrite production, levels of hydroperoxides and thiobarbituric acid reactive substances (TBARS) in platelet membranes in the basal state and after in vitro peroxidative stress with phenylhydrazine were determined in 40 pregnant women with GDM, 40 healthy pregnant women (pregnant controls) of comparable age and gestational age, and 15 healthy non-pregnant women (controls). Results NOS activity was significantly increased in both groups of pregnant women compared with non-pregnant ones, and in GDM women compared with pregnant controls. Production of peroxynitrite was higher in GDM women than in pregnant controls, who also had significantly reduced production compared with non-pregnant women. Basal levels of peroxidation of the platelet membranes evaluated either by hydroperoxide content and TBARS levels or the susceptibility to peroxidation were increased in GDM patients in comparison with both control groups. Conclusions We have shown a modification in platelet NO and peroxynitrite production and an increase in platelet indicators of oxidative stress in GDM women compared with healthy pregnant women which might be at the basis of a cellular dysfunction. [source]


Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophages

FEBS JOURNAL, Issue 6 2007
Bronwyn E. Brown
Nonenzymatic covalent binding (glycation) of reactive aldehydes (from glucose or metabolic processes) to low-density lipoproteins has been previously shown to result in lipid accumulation in a murine macrophage cell line. The formation of such lipid-laden cells is a hallmark of atherosclerosis. In this study, we characterize lipid accumulation in primary human monocyte-derived macrophages, which are cells of immediate relevance to human atherosclerosis, on exposure to low-density lipoprotein glycated using methylglyoxal or glycolaldehyde. The time course of cellular uptake of low-density lipoprotein-derived lipids and protein has been characterized, together with the subsequent turnover of the modified apolipoprotein B-100 (apoB) protein. Cholesterol and cholesteryl ester accumulation occurs within 24 h of exposure to glycated low-density lipoprotein, and increases in a time-dependent manner. Higher cellular cholesteryl ester levels were detected with glycolaldehyde-modified low-density lipoprotein than with methylglyoxal-modified low-density lipoprotein. Uptake was significantly decreased by fucoidin (an inhibitor of scavenger receptor SR-A) and a mAb to CD36. Human monocyte-derived macrophages endocytosed and degraded significantly more 125I-labeled apoB from glycolaldehyde-modified than from methylglyoxal-modified, or control, low-density lipoprotein. Differences in the endocytic and degradation rates resulted in net intracellular accumulation of modified apoB from glycolaldehyde-modified low-density lipoprotein. Accumulation of lipid therefore parallels increased endocytosis and, to a lesser extent, degradation of apoB in human macrophages exposed to glycolaldehyde-modified low-density lipoprotein. This accumulation of cholesteryl esters and modified protein from glycated low-density lipoprotein may contribute to cellular dysfunction and the increased atherosclerosis observed in people with diabetes, and other pathologies linked to exposure to reactive carbonyls. [source]


Homocysteine-induced decrease in endothelin-1 production is initiated at the extracellular level and involves oxidative products

FEBS JOURNAL, Issue 20 2001
Séverine Drunat
The increased cardiovascular risk associated with hyperhomocysteinemia has been partly related to homocysteine (Hcy)-induced endothelial cell dysfunction. However, the intra or extracellular starting point of the interaction between Hcy and endothelial cells, leading to cellular dysfunction, has not yet been identified. We investigated the effects of both intracellular and extracellular Hcy accumulation on endothelin-1 (ET-1) synthesis by cultured human endothelial cells. Incubation of cultures with methionine (1.0 mmol·L,1) for 2 h induced a slight increase in cellular Hcy content but no change in ET-1 production. Incubation of cells with Hcy (0.2 mmol·L,1) led to a significant fall in ET-1 generation, accompanied by a significant increase in cellular Hcy content. Addition of the amino-acid transport system L substrate 2-amino-2-norbornane carboxylic acid had no effect on the Hcy-induced decrease in ET-1 production but significantly inhibited the Hcy-induced increase in the cellular Hcy content. Incubation of cells with a lower Hcy concentration (0.05 mmol·L,1) also reduced ET-1 production without increasing the cellular Hcy content. Co-incubation with extracellular free-radical inhibitors (superoxide dismutase, catalase and mannitol) markedly reduced the effect of Hcy on ET-1 production. Thus, it is extracellular Hcy accumulation that triggers the decrease in ET-1 production by endothelial cells through oxidative products. [source]


Response of lung ,, T cells to experimental sepsis in mice

IMMUNOLOGY, Issue 1 2004
Mark Hirsh
Summary ,, T cells link innate and adaptive immune systems and may regulate host defence. Their role in systemic inflammation induced by trauma or infection (sepsis) is still obscured. The present study was aimed to investigate functions of lung ,, T cells and their response to experimental sepsis. Mice were subjected to caecal ligation and puncture (CLP) to induce sepsis and acute lung injury (ALI), or to the sham operation. Animals were killed 1, 4, and 7 days postoperatively; lungs were examined by histology, and isolated cells were studied by flow cytometry. Absolute number of ,, T cells progressively increased in lungs during sepsis, and reached a seven-fold increase at day 7 after CLP (3·84 ± 0·41 × 105/lung; P,=,0·0002 versus sham). A cellular dysfunction was revealed one day after CLP, as manifested by low cytolytic activity (22·3 ± 7·1%; P,<,0·05 versus sham), low interferon-, (IFN-,; 8·5 ± 2·5%; P,<,0·05 versus control) and interleukin-10 (IL-10) expression, and high tumour necrosis factor-, expression (19·5 ± 1·7%; P,<,0·05 versus control). The restoration of cytotoxicity, and increase in IFN-, and IL-10 expression was observed at day 7 of CLP-induced sepsis. In summary, our results demonstrate significant progressive accumulation of ,, T cells in lungs during CLP-induced ALI. The temporary functional suppression of lung ,, T cells found early after CLP may influence the outcome of sepsis, possibly being associated with uncontrolled inflammatory lung damage. [source]


Soluble oligomers from a non-disease related protein mimic A,-induced tau hyperphosphorylation and neurodegeneration

JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
Marcelo N. N. Vieira
Abstract Protein aggregation and amyloid accumulation in different tissues are associated with cellular dysfunction and toxicity in important human pathologies, including Alzheimer's disease and various forms of systemic amyloidosis. Soluble oligomers formed at the early stages of protein aggregation have been increasingly recognized as the main toxic species in amyloid diseases. To gain insight into the mechanisms of toxicity instigated by soluble protein oligomers, we have investigated the aggregation of hen egg white lysozyme (HEWL), a normally harmless protein. HEWL initially aggregates into ,-sheet rich, roughly spherical oligomers which appear to convert with time into protofibrils and mature amyloid fibrils. HEWL oligomers are potently neurotoxic to rat cortical neurons in culture, while mature amyloid fibrils are little or non-toxic. Interestingly, when added to cortical neuronal cultures HEWL oligomers induce tau hyperphosphorylation at epitopes that are characteristically phosphorylated in neurons exposed to soluble oligomers of the amyloid-, peptide. Furthermore, injection of HEWL oligomers in the cerebral cortices of adult rats induces extensive neurodegeneration in different brain areas. These results show that soluble oligomers from a non-disease related protein can mimic specific neuronal pathologies thought to be induced by soluble amyloid-, peptide oligomers in Alzheimer's disease and support the notion that amyloid oligomers from different proteins may share common structural determinants that would explain their generic cytotoxicities. [source]


Mitochondria: A mirror into cellular dysfunction in heart disease

PROTEOMICS - CLINICAL APPLICATIONS, Issue 6 2008
Melanie Y. White Dr.
Abstract Cardiovascular (CV) disease is the single most significant cause of morbidity and mortality worldwide. The emerging global impact of CV disease means that the goals of early diagnosis and a wider range of treatment options are now increasingly pertinent. As such, there is a greater need to understand the molecular mechanisms involved and potential targets for intervention. Mitochondrial function is important for physiological maintenance of the cell, and when this function is altered, the cell can begin to suffer. Given the broad range and significant impacts of the cellular processes regulated by the mitochondria, it becomes important to understand the roles of the proteins associated with this organelle. Proteomic investigations of the mitochondria are hampered by the intrinsic properties of the organelle, including hydrophobic mitochondrial membranes; high proportion of basic proteins (pI greater than 8.0); and the relative dynamic range issues of the mitochondria. For these reasons, many proteomic studies investigate the mitochondria as a discrete subproteome. Once this has been achieved, the alterations that result in functional changes with CV disease can be observed. Those alterations that lead to changes in mitochondrial function, signaling and morphology, which have significant implications for the cardiomyocyte in the development of CV disease, are discussed. [source]


Effects of 100 GHz radiation on alkaline phosphatase activity and antigen,antibody interaction,

BIOELECTROMAGNETICS, Issue 3 2009
A. Homenko
Abstract Equipment that generates microwave radiation (MWR) spanning the frequency range of 300 MHz,100 GHz is becoming more common. While MWR lacks sufficient energy to break chemical bonds, the disagreement as to whether MWR exposure is detrimental to cellular dysfunction may be difficult to clarify using complex systems such as whole animals, cells, or cell extracts. Recently, the high frequency range of terahertz (THz) radiation has been explored and sources of radiation and its detectors have been developed. THz radiation is associated with the frequency interval from 100 GHz to 20 THz and constitutes the next frontier in imaging science and technology. In the present study, we investigated the effect of radiation in the low frequency THz range (100 GHz) on two defined molecular interactions. First, the interaction of soluble or immobilized calf alkaline phosphatase with the substrate p -nitrophenylphosphate and second, the interaction between an antibody (mouse monoclonal anti-DNP) and its antigen (DNP). Irradiation of enzyme either prior to addition of substrate or during the enzymatic reaction resulted in small but significant reductions in enzyme activity. These differences were not observed if the enzyme had previously been immobilized onto plastic microwells. Exposure of immobilized antigen to radiation did not influence the ability of the antigen to interact with antibody. However, irradiation appeared to decrease the stability of previously formed antigen,antibody complexes. Our data suggest that 100 GHz radiation can induce small but statistically significant alterations in the characteristics of these two types of biomolecular interactions. Bioelectromagnetics 30:167,175, 2009. © 2008 Wiley-Liss, Inc. [source]


OXIDIZED LOW-DENSITY LIPOPROTEIN INDUCES ENDOTHELIAL PROGENITOR CELL SENESCENCE, LEADING TO CELLULAR DYSFUNCTION

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 7 2004
Toshio Imanishi
SUMMARY 1.,Recent studies have revealed an association between coronary risk factors and both the number and function of bone marrow-derived endothelial progenitor cells (EPC). We investigated the effect of oxidized low-density lipoprotein (ox-LDL) on the senescence of EPC, leading to cellular dysfunction. 2.,Endothelial progenitor cells were isolated from human peripheral blood and characterized. The exposure of cultured EPC to ox-LDL (10 µg/mL) significantly accelerated the rate of senescence compared with control during 20 days in culture as determined by acidic ,-galactosidase staining. Oxidized LDL-induced EPC senescence was significantly inhibited by pretreatment with either lectin-like ox-LDL receptor-1 (LOX-1) antibody (Ab) or atorvastatin (P < 0.01). 3.,Because cellular senescence is critically influenced by telomerase, which elongates telomeres, we measured telomerase activity using a polymerase chain reaction,ELISA-based assay. Oxidized LDL significantly diminished telomerase activity to approximately 50%, an effect that was significantly abolished by pretreatment with either LOX-1 Ab or atorvastatin (P < 0.01). 4.,We examined whether ox-LDL-induced EPC senescence translates into EPC dysfunction. An MTS assay disclosed an inhibitory effect of ox-LDL on EPC proliferation. In a Matrigel assay, EPC treated with ox-LDL were less likely to participate in network fomation compared with controls. 5.,In conclusions, ox-LDL accelerates the onset of EPC senescence, which may be related to telomerase inactivation. Oxidized LDL-induced EPC senescence leads to the impairment of proliferative capacity and network formation. [source]


The role of taurine in diabetes and the development of diabetic complications

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2001
Svend Hřime Hansen
Abstract The ubiquitously found ,-amino acid taurine has several physiological functions, e.g. in bile acid formation, as an osmolyte by cell volume regulation, in the heart, in the retina, in the formation of N -chlorotaurine by reaction with hypochlorous acid in leucocytes, and possibly for intracellular scavenging of carbonyl groups. Some animals, such as the cat and the C57BL/6 mouse, have disturbances in taurine homeostasis. The C57BL/6 mouse strain is widely used in diabetic and atherosclerotic animal models. In diabetes, the high extracellular levels of glucose disturb the cellular osmoregulation and sorbitol is formed intracellularly due to the intracellular polyol pathway, which is suspected to be one of the key processes in the development of diabetic late complications and associated cellular dysfunctions. Intracellular accumulation of sorbitol is most likely to cause depletion of other intracellular compounds including osmolytes such as myo -inositol and taurine. When considering the clinical complications in diabetes, several links can be established between altered taurine metabolism and the development of cellular dysfunctions in diabetes which cause the clinical complications observed in diabetes, e.g. retinopathy, neuropathy, nephropathy, cardiomyopathy, platelet aggregation, endothelial dysfunction and atherosclerosis. Possible therapeutic perspectives could be a supplementation with taurine and other osmolytes and low-molecular compounds, perhaps in a combinational therapy with aldose reductase inhibitors. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Correction of the CF defect by curcumin: hypes and disappointments

BIOESSAYS, Issue 1 2005
Marcus Mall
Cystic fibrosis (CF), the most-common lethal hereditary disease in the white population, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The mutation that is most frequently responsible for the disease, ,F508, causes misfolding and retention of the CFTR protein in the endoplasmic reticulum. This leads to a series of cellular dysfunctions and results in a multi-organ disease. In a recent report, Egan et al.1 demonstrated that curcumin, a non-toxic natural product and major constituent of turmeric spice, corrected the CF defects in ,F508 CF mice. This paper aroused a lot of attention and hopes were raised that curcumin might produce similar effects in human, giving an efficient treatment for most CF patients. However, skepticism is growing since subsequent studies fail to reproduce these initial exciting results. Thus, although herbal medicines and dietary supplements can be desirable alternatives to classical pharmacological compounds, their efficacy needs careful evaluation both in vivo and ex vivo. BioEssays 27:9,13, 2005. © 2004 Wiley Periodicals, Inc. [source]