| |||
Cellular Defence Mechanisms (cellular + defence_mechanism)
Selected AbstractsCurrent knowledge of host response in human tineaMYCOSES, Issue 4 2009J. Brasch Summary Skin infection caused by dermatophytes is called tinea. In this short review, the known mechanisms and factors involved in human tinea and important for the host response are briefly delineated. To establish tinea, fungal propagules must attach to the skin, germinate and overcome the epidermal barrier. Keratinases and other enzymes are released in this process and host keratinocytes are activated. This is followed by an inflammatory response mediated by a plentitude of cytokines and receptors, comprising innate as well as acquired immunity, including neutrophilic granulocytes, macrophages, antibodies and T cells. Cellular defence mechanisms appear to be decisive for clearing of infection. Nails and hair follicles are the particular sites often invaded by dermatophytes that show distinctive patterns of infection. Nails are largely excluded from defence mechanisms and steroid hormones of the pilosebaceous units may have a particular effect on follicular infection. Fungal invasion of the dermis can cause granulomatous reactions. Immune reactions to dermatophytes may lead to sterile eruptions distant from the infected skin areas. [source] Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductasesBIOLOGICAL REVIEWS, Issue 3 2008Xing-Hai Zhang Abstract The majority of extant life forms thrive in an O2 -rich environment, which unavoidably induces the production of reactive oxygen species (ROS) during cellular activities. ROS readily oxidize methionine (Met) residues in proteins/peptides to form methionine sulphoxide [Met(O)] that can lead to impaired protein function. Two methionine sulphoxide reductases, MsrA and MsrB, catalyse the reduction of the S and R epimers, respectively, of Met(O) in proteins to Met. The Msr system has two known functions in protecting cells against oxidative damage. The first is to repair proteins that have lost activity due to Met oxidation and the second is to function as part of a scavenger system to remove ROS through the reversible oxidation/reduction of Met residues in proteins. Bacterial, plant and animal cells lacking MsrA are known to be more sensitive to oxidative stress. The Msr system is considered an important cellular defence mechanism to protect against oxidative stress and may be involved in ageing/senescence. MsrA is present in all known eukaryotes and eubacteria and a majority of archaea, reflecting its essential role in cellular life. MsrB is found in all eukaryotes and the majority of eubacteria and archaea but is absent in some eubacteria and archaea, which may imply a less important role of MsrB compared to MsrA. MsrA and MsrB share no sequence or structure homology, and therefore probably emerged as a result of independent evolutionary events. The fact that some archaea lack msr genes raises the question of how these archaea cope with oxidative damage to proteins and consequently of the significance of msr evolution in oxic eukaryotes dealing with oxidative stress. Our best hypothesis is that the presence of ROS-destroying enzymes such as peroxiredoxins and a lower dissolved O2 concentration in those msr -lacking organisms grown at high temperatures might account for the successful survival of these organisms under oxidative stress. [source] Persistence of vibrios in marine bivalves: the role of interactions with haemolymph componentsENVIRONMENTAL MICROBIOLOGY, Issue 6 2005Carla Pruzzo Summary Marine bivalves are widespread in coastal environments and, due to their filter-feeding habit, they can accumulate large numbers of bacteria thus acting as passive carriers of human pathogens. Bivalves possess both humoral and cellular defence mechanisms that operate in a co-ordinated way to kill and eliminate infecting bacteria. Vibrio species are very abundant in coastal waters and are commonly isolated from edible bivalves tissues where they can persist after depuration processes in controlled waters. Such observations indicate that vibrios are regular components of bivalve microflora and that the molluscs can represent an important ecological niche for these bacteria. Here we tried to summarize data on the interactions between vibrios and bivalve haemolymph; the available evidence supports the hypothesis that persistence of bacteria in bivalve tissues depends, at least in part, on their sensitivity to the bactericidal activity of the haemolymph. Results obtained with an in vitro model of Vibrio cholerae challenged against Mytilus galloprovincialis haemocytes indicate that bacterial surface components, soluble haemolymph factors and the signalling pathways of the haemocyte host are involved in determining the result of vibrio,haemolymph interactions. [source] Heat Shock Protein-27 Is Upregulated in the Temporal Cortex of Patients with EpilepsyEPILEPSIA, Issue 12 2004Hans-J Bidmon Summary:,Purpose: Heat shock protein-27 (HSP-27) belongs to the group of small heat shock proteins that become induced in response to various pathologic conditions. HSP-27 has been shown to protect cells and subcellular structures, particularly mitochondria, and serves as a carrier for estradiol. It is a reliable marker for tissues affected by oxidative stress. Oxidative stress and related cellular defence mechanisms are currently thought to play a major role during experimentally induced epileptic neuropathology. We addressed the question whether HSP-27 becomes induced in the neocortex resected from patients with pharmacoresistant epilepsy. Methods: Human epileptic temporal neocortex was obtained during neurosurgery, and control tissue was obtained at autopsy from subjects without known neurologic diseases. The tissues were either frozen for Western blot analysis or fixed in Zamboni's fixative for the topographic detection of HSP-27 at the cellular level by means of immunohistochemistry. Results: HSP-27 was highly expressed in all epilepsy specimens and in the cortex of a patient who died in the final stage of multiple sclerosis (positive control), whereas only low amounts of HSP-27 were detectable in control brains. In epilepsy patients, HSP-27 was present in astrocytes and in the walls of blood vessels. The intracortical distribution patterns varied strongly among the epilepsy specimens. Conclusions: These results demonstrate that HSP-27 becomes induced in response to epileptic pathology. Although the functional aspects of HSP-27 induction during human epilepsy have yet to be elucidated, it can be concluded that HSP-27 is a marker for cortical regions in which a stress response has been caused by seizures. [source] Cytotoxic effects of polychlorinated biphenyl hydroquinone metabolites in rat hepatocytesJOURNAL OF APPLIED TOXICOLOGY, Issue 2 2010Katie Chan Abstract Polychlorinated biphenyls (PCBs) are persistent organic pollutants that exhibit various toxic effects in animals and exposed human populations. The molecular mechanisms of PCB toxicity have been attributed to the toxicological properties of its metabolites, such as hydroquinones, formed by cytochrome-P-450 oxidation. The effects of PCB hydroquinone metabolites towards freshly isolated rat hepatocytes were investigated. Hydroquinones can be oxidized to semiquinones and/or quinone metabolites. These metabolites can conjugate glutathione or can oxidize glutathione as a result of redox cycling. This depletes hepatocyte glutathione, which can inhibit cellular defence mechanisms, causing cell death and an increased susceptibility to oxidative stress. However in the following, glutathione-depleted hepatocytes became more resistant to the hydroquinone metabolites of PCBs. This suggested that their glutathione conjugates were toxic and that there was a third type of quinone toxicity mechanism which involved a hydrogen peroxide-accelerated autoxidation of the hydroquinones to form toxic electrophilic quinone and semiquinone,glutathione conjugates. Copyright © 2009 John Wiley & Sons, Ltd. [source] Introduction on the multifaceted roles of nitric oxide in the retinaACTA OPHTHALMOLOGICA, Issue 2009NN OSBORNE Multifaceted roles of nitric oxide in the retina. N.N. Osborne. Nuffield Lab of Ophthalmology, University of Oxford, Oxford, United Kingdom Nitric oxide (NO), a free radical gas with a half-life of a few seconds is implicated in various physiological and pathophysiological roles associated with the retina and its vasculature. Generated by a family of nitric oxide synthetases (NOS), NO has been shown to bind to soluble guanylyl cyclase and to mitochondrial cytochrome c oxidase to activate defined signalling cascades. Different types of NOS exist and can be activated by calcium dependent (NOS1 and NOS3) or independent (NOS2) mechanisms. Generally, NOS1 is located to neurones while NOS2 and NOS3 are in glial and endothelial cells, respectively. NO is involved in communication between different neurones, glial cells and neurones, and in the interactions of endothelial cells with pericytes and neurones. As a consequence, a reduction in the generation of endogenous NO in the healthy retina can result in vasoconstriction; the consequences of such an affect on the retina and alterations in visual processing may alter the photoreceptor transduction mechanism and communication between retinal cells. The binding of NO to mitochondrial cytochrome c oxidase to effectively compete with oxygen has been suggested be involved in a number of processes. NO-elicited events act as triggers by which mitochondrial signal transduction cascades become involved in the induction of cellular defence mechanisms and adaptive responses. Moreover, the effect of NO on the electron transport chain might lead to mitochondrial dysfunction and pathology. NO clearly has a multifaceted role in the healthy and unhealthy retina. [source] |