| |||
Cell-penetrating Peptides (cell-penetrating + peptide)
Selected AbstractsShuttling Gold Nanoparticles into Tumoral Cells with an Amphipathic Proline-Rich PeptideCHEMBIOCHEM, Issue 6 2009Sílvia Pujals Abstract Golden bullets: The amphipathic proline-rich cell-penetrating peptide sweet arrow peptide (SAP) is able to transport 12 nm gold nanoparticles efficiently into HeLa cells, as observed by three microscopy techniques: transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and transmission X-ray microscopy (TXM). Multiconjugation to such nanoparticles may provide a convenient method for unifying the key drug properties of high activity, capacity to home onto targets and delivery to therapeutic places of action. Cell-penetrating peptides (CPPs) are a potential tool for intracellular delivery of different kinds of cargoes. Because of their growing use in nanobiomedicine, both for diagnostics and for treatment, metal nanoparticles are an interesting cargo for CPPs. Here, gold nanoparticles (AuNps) and the amphipathic proline-rich peptide SAP have been used. Conjugation of the peptide onto the AuNps was achieved by addition of a cysteine to the SAP sequence for thiol chemisorption on gold, and the attachment was confirmed by visible spectroscopy, dynamic light scattering (DLS), ,-potential (ZP), stability towards ionic strength (as high as 1,M NaCl), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HR-TEM) coupled to electron energy loss spectroscopy (EELS). AuNp-C-SAP internalization in HeLa cells was observed by three different microscopy techniques,TEM, confocal laser scanning microscopy (CLSM) and transmission X-ray microscopy (TXM),and all of them have confirmed the effective intracellular delivery of AuNps by SAP. [source] The cytosolic domain of APP induces the relocalization of dynamin 3 in hippocampal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2006X. Meckler Abstract Amyloid precursor protein (APP) has been the subject of intense research to uncover its implication in Alzheimer's disease. Its physiological function is, however, still poorly understood. Herein, we investigated its possible influence on the development of cultured hippocampal neurons. A peptide corresponding to the APP intracellular domain linked to a cell-penetrating peptide was used to alter the interactions of APP with its cytosolic partners. This treatment promoted the concentration of the cytosolic GTPase dynamin 3 (Dyn3) in neurite segments when most untreated cells displayed a homogenous punctate distribution of Dyn3. The Dyn3-labelled segments were excluded from those revealed by APP staining after aldehyde fixation. Interestingly, after aldehyde fixation MAP2 also labelled segments excluded from APP-stained segments. Thus APP is also a marker for the spacing pattern of neurites demonstrated by Taylor & Fallon (2006)J. Neurosci., 26, 1154,4463. [source] Tat cell-penetrating peptide has the characteristics of a poly(proline) II helix in aqueous solution and in SDS micellesJOURNAL OF PEPTIDE SCIENCE, Issue 7 2004Paolo Ruzza Abstract Tat cell-penetrating peptide (GRKKRRQRRRPPQG) is able to translocate and carry molecules across cell membranes. Using CD spectroscopy the conformation of this synthetic peptide was studied in aqueous and membrane-mimicking, micellar SDS solutions at different temperatures. The CD spectrum of the Tat cell-penetrating peptide in SDS micellar solution was virtually unchanged from that in aqueous solution, and at low temperature it was close to that of a poly(proline) II helix. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. [source] Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragmPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 3 2009Philip Doran Abstract The disintegration of the dystrophin,glycoprotein complex represents the initial pathobiochemical insult in Duchenne muscular dystrophy. However, secondary changes in signalling, energy metabolism and ion homeostasis are probably the main factors that eventually cause progressive muscle wasting. Thus, for the proper evaluation of novel therapeutic approaches, it is essential to analyse the reversal of both primary and secondary abnormalities in treated muscles. Antisense oligomer-mediated exon skipping promises functional restoration of the primary deficiency in dystrophin. In this study, an established phosphorodiamidate morpholino oligomer coupled to a cell-penetrating peptide was employed for the specific removal of exon 23 in the mutated mouse dystrophin gene transcript. Using DIGE analysis, we could show the reversal of secondary pathobiochemical abnormalities in the dystrophic diaphragm following exon-23 skipping. In analogy to the restoration of dystrophin, ,-dystroglycan and neuronal nitric oxide synthase, the muscular dystrophy-associated differential expression of calsequestrin, adenylate kinase, aldolase, mitochondrial creatine kinase and cvHsp was reversed in treated muscle fibres. Hence, the re-establishment of Dp427 coded by the transcript missing exon 23 has counter-acted dystrophic alterations in Ca2+ -handling, nucleotide metabolism, bioenergetic pathways and cellular stress response. This clearly establishes the exon-skipping approach as a realistic treatment strategy for diminishing diverse downstream alterations in dystrophinopathy. [source] Multifunctional host defense peptides: intracellular-targeting antimicrobial peptidesFEBS JOURNAL, Issue 22 2009Pierre Nicolas There is widespread acceptance that cationic antimicrobial peptides, apart from their membrane-permeabilizing/disrupting properties, also operate through interactions with intracellular targets, or disruption of key cellular processes. Examples of intracellular activity include inhibition of DNA and protein synthesis, inhibition of chaperone-assisted protein folding and enzymatic activity, and inhibition of cytoplasmic membrane septum formation and cell wall synthesis. The purpose of this minireview is to question some widely held views about intracellular-targeting antimicrobial peptides. In particular, I focus on the relative contributions of intracellular targeting and membrane disruption to the overall killing strategy of antimicrobial peptides, as well as on mechanisms whereby some peptides are able to translocate spontaneously across the plasma membrane. Currently, there are no more than three peptides that have been convincingly demonstrated to enter microbial cells without the involvement of stereospecific interactions with a receptor/docking molecule and, once in the cell, to interfere with cellular functions. From the limited data currently available, it seems unlikely that this property, which is isolated in particular peptide families, is also shared by the hundreds of naturally occurring antimicrobial peptides that differ in length, amino acid composition, sequence, hydrophobicity, amphipathicity, and membrane-bound conformation. Microbial cell entry and/or membrane damage associated with membrane phase/transient pore or long-lived transitions could be a feature common to intracellular-targeting antimicrobial peptides and mammalian cell-penetrating peptides that have an overrepresentation of one or two amino acids, i.e. Trp and Pro, His, or Arg. Differences in membrane lipid composition, as well as differential lipid recruitment by peptides, may provide a basis for microbial cell killing on one hand, and mammalian cell passage on the other. [source] Evidence for an amphipathicity independent cellular uptake of amphipathic cell-penetrating peptidesFEBS JOURNAL, Issue 19 2000Anne Scheller The cellular uptake of a peptide set derived from membrane-permeable ,-helical amphipathic peptides by stepwise alterations of structure forming propensity and charge was studied by confocal laser scanning microscopy (CLSM) combined with HPLC. For CLSM monitoring, an online protocol was employed that avoided bias of the uptake results by washout. Using this protocol, extensive fluorescence, approaching the intensity of the external peptide, was observed in the cytosol and nucleus within minutes in all cases, irrespective of the degree of amphipathicity. HPLC analyses of the cell lysates revealed the unmetabolized peptides to be the predominant source of the intracellular fluorescence. Significant amphipathicity-dependent differences became apparent only after washing the peptide-loaded cells, reflecting the effects of amphipathicity on resistance to wash out. Exposure of the cells to the peptides at 37 and 0 °C led to similar results, indicating the nonendocytic character of the uptake. With a view to practical applications , the results of the present study open the possibility of exploiting nonamphipathic peptides as vectors for translocating polar compounds into the cell interior, which would circumvent substantial obstacles currently connected with the use of amphipathic vector peptides, such as membrane toxicity and low solubility. Moreover, differences in the uptake of several members of the investigated peptide series into different cell types present a promising basis for the design of cell-type specific vector peptides. [source] A brief introduction to cell-penetrating peptidesJOURNAL OF MOLECULAR RECOGNITION, Issue 5 2003Pontus Lundberg Abstract Cell membranes act as protective walls to exclude most molecules that are not actively imported by living cells. This is an efficient way for a cell to prevent uncontrolled influx or efflux of solutes, which otherwise would be harmful to it. Only compounds within a narrow range of molecular size, polarity and net charge are able to diffuse effectively through cell membranes. In order to overcome this barrier for effective delivery of membrane-impermeable molecules, several chemical and physical methods have been developed. These methods, e.g. electroporation, and more recent methods as cationic lipids/liposomes, have been shown to be effective for delivering hydrophobic macromolecules. The drawbacks of these harsh methods are, primarily, the unwanted cellular effects exerted by them, and, secondly, their limitation to in vitro applications. The last decade's discovery of cell-penetrating peptides translocating themselves across cell membranes of various cell lines, along with a cargo 100-fold their own size, via a seemingly energy-independent process, opens up the possibility for efficient delivery of DNA, antisense peptide nucleic acids, oligonucleotides, proteins and small molecules into cells both in vitro and in vivo. Copyright © 2003 John Wiley & Sons, Ltd. [source] Investigation of penetratin peptides.JOURNAL OF PEPTIDE SCIENCE, Issue 12 2005Part 2. Abstract As endocytic uptake of the Antennapedia homeodomain-derived penetratin peptide (RQIKIWFQNRRMKWKK) is finally being revealed, some of the early views about penetratin need to be reconsidered. Endocytic uptake seems to contradict the indispensability of tryptophans and also the minimum length of 16 amino acid residues for efficient internalization. To revise the membrane translocation of penetratin, two penetratin analogs were designed and synthesized: a peptide in which tryptophans were replaced by phenylalanines (Phe6, 14 -penetratin, RQIKIFFQNRRMKFKK) and a shortened analog (dodeca-penetratin, RQIKIWF-R-KWKK) made up of only 12 residues. The peptides were fluorescently labeled and applied to live, unfixed cells from various lines. Cellular uptake was analysed by confocal microscopy and flow cytometry. Low temperature or ATP-depletion blocked the intracellular entry of all three penetratin peptides. A decrease in membrane fluidity or cholesterol depletion with methyl-,-cyclodextrin greatly inhibited peptide uptake, showing the involvement of cholesterol-rich lipid rafts in internalization. Exogenous heparan sulfate also diminished the internalization of penetratin and its derivatives, reflecting the paramount importance of electrostatic interactions with polyanionic cell-surface proteoglycans. The beneficial presence of tryptophans is supported by observations on the decreased cellular uptake of Phe6, 14 -penetratin. The maintained translocational efficiency of dodeca-penetratin demonstrates that a thorough understanding of penetratin internalization can yield new penetratin analogs with unaltered translocational abilities. This study provides evidence on the energy-dependent and lipid raft-mediated endocytic uptake of penetratin and highlights the necessity of revealing those pathways that cationic cell-penetrating peptides employ to enter live cells. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd. [source] Novel, cell-penetrating molecular transporters with flexible backbones and permanently charged side-chainsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2007N. Bodor Various cell-penetrating peptides have been discovered recently that can translocate across plasma membranes and can even carry large cargo molecules into the cells. Because under physiological conditions most of these peptides carry considerable positive charges due to the presence of basic amino acids such as arginine, we decided to investigate whether molecular transporters composed of permanently charged side-chains also possess such cell penetrating ability. Arginine-rich oligomers that have a backbone with increased flexibility due to incorporation of non-,-amino acids (,-aminocaproic acid) have been found to be effective molecular transporters. Here, we report the preparation of analogue structures by replacing the arginine residues with the quaternary form of a novel redox amino acid (Nys+) that contain a trigonelline moiety; it has already been shown possible to replace the original basic amino acid side-chain of neuropeptides without significant activity-loss due to the sufficiently close steric and electronic analogy between the new Nys+ and the original side-chains (in their protonated form, e.g., Arg+, Lys+). A nonamer analogue showed transporter activity resulting in increased cellular uptake in human carcinoma (HeLa) cells. [source] Direct Observation of Anion-Mediated Translocation of Fluorescent Oligoarginine Carriers into and across Bulk Liquid and Anionic Bilayer MembranesCHEMBIOCHEM, Issue 1 2005Naomi Sakai Dr. Abstract The recent hypothesis that counteranion-mediated dynamic inversion of charge and solubility might contribute to diverse functions of oligoarginines in biomembranes was tested with two fluorescently labelled oligomers, FL-R8, one of the most active cell-penetrating peptides, and its longer version, FL-R16. We report evidence for counteranion-mediated phase transfer from water into bulk chloroform and anionic lipid-bilayer membranes as well as reverse-phase transfer from bulk chloroform and across intact lipid-bilayer membranes into water. The differences found between FL-R8 and FL-R16 with regard to location in the bilayer and reverse-phase transfer from bulk and lipid-bilayer membranes into water implied that the reported results may be relevant for biological function. [source] Detection of the activity of ion channels and pores by circular dichroism spectroscopy: G-quartets as functional CD probes within chirogenic vesicles,CHIRALITY, Issue 9 2008Andreas Hennig Abstract We introduce a method to detect the activity of ion channels and pores with circular dichroism (CD) spectroscopy. G-quartets obtained by potassium templated self-assembly of 5,-guanosine monophosphate (GMP) are used as CD probes, the bee-toxin melittin as representative pore and gramicidin A as representative ion channel. To detect the activity of pores with CD spectroscopy, vesicles were loaded with GMP at concentrations above the dissociation constant (KD) of G-quartets. GMP efflux through added pores was detectable as CD silencing due to G-quartet disassembly by local dilution. The Hill plot of melittin with Hill coefficient n = 4 was faithfully reproduced with CD detection. The same was true for counterion-activated cell-penetrating peptides, confirming their ability to mediate the export of anions such as GMP. The same method is not applicable to the CD detection of the activity of ion channels because GMP efflux does not occur. To do that, the potassium selectivity of G-quartets was used. Namely, vesicles were loaded with GMP at concentrations above the dissociation constant (KD) of G-quartets stabilized by potassium. External M/K cation exchange resulted in CD silencing by M/K antiport through the added ion channel followed by G-quartet disassembly within the vesicle. Reversal of the direction of M/K antiport was achieved with Cs-loaded vesicles and detected as the appearance of the CD signature of G-quartets in response to K influx. Corroborative examples with gramicidin A include CD detection of the Eisenman I selectivity sequence and the Hill coefficient. Chirality, 2008. © 2008 Wiley-Liss, Inc. [source] |