Cell Specification (cell + specification)

Distribution by Scientific Domains


Selected Abstracts


Id2, Id3, and Id4 proteins show dynamic changes in expression during vibrissae follicle development

DEVELOPMENTAL DYNAMICS, Issue 6 2008
Nigel L. Hammond
Abstract Id proteins are involved in the transcriptional control of many fundamental biological processes, including differentiation and lineage commitment. We studied Id2, Id3, and Id4 protein expression during different stages of rat vibrissa follicle development using immunohistochemistry. Id2 was highly expressed in the cytoplasm of specialized cells in the basal epidermis and outer root sheath during early stages of follicle development. These cells were identified as Merkel cells (MCs) by means of double-immunolabeling with synaptophysin and cytokeratin-20, and persisted in neonatal follicles. Id3 immunofluorescence was characterized by membrane-associated expression in basal epithelial cells of follicles early in development. Subsequently follicle epithelial cells switched to have strong nuclear labeling, also a feature of newly forming dermal papilla cells. Id4 expression was primarily associated with innervation of the developing follicle musculature. These observations illustrate dynamic expression patterns of Id2 and Id3 proteins in developing follicles and specifically link Id2 expression to Merkel cell specification. Developmental Dynamics 237:1653,1661, 2008. © 2008 Wiley-Liss, Inc. [source]


Expression of a non-DNA-binding Ikaros isoform exclusively in B cells leads to autoimmunity but not leukemogenesis

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2007
Heather Wojcik
Abstract Ikaros is a transcriptional regulator whose function is essential for B cell development. It is expressed in the hematopoietic stem cell (HSC) through the mature B cell stage. Using genetically engineered mice in which the endogenous Ikaros gene is disrupted, it has been shown that a lack of Ikaros leads to a block in B cell development and that its severe diminution results in a hyperresponsive B cell compartment. Ikaros expression within the HSC has led to speculation as to whether the role of Ikaros in B cell biology is largely accomplished prior to B cell specification. In addition, widespread expression of Ikaros in hematopoietic cells leads to the possibility that some or all of the observed defects are not B cell autonomous. In this report, we demonstrate that over-expression of a dominant interfering Ikaros isoform exclusively in B cells has profound effects on mature B cell function. We provide evidence that continued high-level expression of Ikaros is essential for homeostasis of peripheral lymphocytes and maintenance of B cell tolerance. We also show that deregulation of Ikaros activity does not rapidly result in B cell leukemogenesis as it does with 100% penetrance within the T cell lineage. [source]


Regulation of miRNA expression during neural cell specification

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2005
Lena Smirnova
Abstract MicroRNA (miRNA) are a newly recognized class of small, noncoding RNA molecules that participate in the developmental control of gene expression. We have studied the regulation of a set of highly expressed neural miRNA during mouse brain development. Temporal control is a characteristic of miRNA regulation in C. elegans and Drosophila, and is also prominent in the embryonic brain. We observed significant differences in the onset and magnitude of induction for individual miRNAs. Comparing expression in cultures of embryonic neurons and astrocytes we found marked lineage specificity for each of the miRNA in our study. Two of the most highly expressed miRNA in adult brain were preferentially expressed in neurons (mir-124, mir-128). In contrast, mir-23, a miRNA previously implicated in neural specification, was restricted to astrocytes. mir-26 and mir-29 were more strongly expressed in astrocytes than neurons, others were more evenly distributed (mir-9, mir-125). Lineage specificity was further explored using reporter constructs for two miRNA of particular interest (mir-125 and mir-128). miRNA-mediated suppression of both reporters was observed after transfection of the reporters into neurons but not astrocytes. miRNA were strongly induced during neural differentiation of embryonic stem cells, suggesting the validity of the stem cell model for studying miRNA regulation in neural development. [source]


Emerging mechanisms in morphogen-mediated axon guidance

BIOESSAYS, Issue 10 2009
Cristina Sánchez-Camacho
Abstract Early in animal development, gradients of secreted morphogenic molecules, such as Sonic hedgehog (Shh), Wnt and TGF,/Bmp family members, regulate cell proliferation and determine the fate and phenotype of the target cells by activating well-characterized signalling pathways, which ultimately control gene transcription. Shh, Wnt and TGF,/Bmp signalling also play an important and evolutionary conserved role in neural circuit assembly. They regulate neuronal polarization, axon and dendrite development and synaptogenesis, processes that require rapid and local changes in cytoskeletal organization and plasma membrane components. A key question then is whether morphogen signalling at the growth cone uses similar mechanisms and intracellular pathway components to those described for morphogen-mediated cell specification. This review discusses recent advances towards the understanding of this problem, showing how Shh, Wnt and TGF,/Bmp have adapted their ,classical' signalling pathways or adopted alternative and novel molecular mechanisms to influence different aspects of neuronal circuit formation. [source]


The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle

BIOESSAYS, Issue 3 2004
Albrecht Fischer
Platynereis dumerilii, a marine polychaetous annelid with indirect development, can be continuously bred in the laboratory. Here, we describe its spectacular reproduction and development and address a number of open research problems. Oogenesis is easily studied because the oocytes grow while floating in the coelom. Unlike the embryos of other model spiralians, the Platynereis embryo is transparent giving insight into the dynamic structures and processes inside the cells that accompany the prevailing anisotropic cleavages. Functional studies on cell specification and differential gene expression in embryos, larvae, and later stages are underway. Lifelong proliferation of uniform trunk segments qualifies Platynereis as a model for the study of gene expression and of the functional circuitry of this process. Platynereis can also become a stepping stone in the comparison of segmentation between annelids and arthropods because it comes closer to the putative ancestral morphology and style of development than other model annelids. BioEssays 26:314,325, 2004. © 2004 Wiley Periodicals, Inc. [source]


Cell diversity in the retina: more than meets the eye

BIOESSAYS, Issue 10 2003
Tiffany Cook
Over 10 years ago, Pax-6 was shown to play an evolutionarily conserved role in controlling eye formation from Drosophila to humans.1 Since then, the identification of an entire cascade of conserved eye determination genes has brought a new understanding to the developmental relationship between the insect compound eye and the vertebrate camera eye.2 Additional studies are now beginning to suggest that even late aspects of eye development, including cell type specification, also share common molecular machinery. In this commentary, I will discuss some of these findings, with a particular focus on the recent study by Dyer et al.3 describing a novel role for the Prox1 transcription factor in specifying horizontal cells in the mouse retina. As Prospero, the Drosophila homolog of Prox1, also participates in retinal cell specification, these data provide a forum for asking new questions concerning pathways that may regulate retinogenesis across evolution. BioEssays 25:921,925, 2003. © 2003 Wiley Periodicals, Inc. [source]