Cell Reactions (cell + reaction)

Distribution by Scientific Domains


Selected Abstracts


Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reaction

ADVANCED MATERIALS, Issue 24 2008
Jin Luo
No abstract is available for this article. [source]


Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
Vismadeb Mazumder
Abstract This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. [source]


Dose- and time-dependent oval cell reaction in acetaminophen-induced murine liver injury,

HEPATOLOGY, Issue 6 2005
Alexander V. Kofman
We examined the response of murine oval cells, that is, the putative liver progenitor cells, to acetaminophen. Female C57BL/6J mice were injected intraperitoneally with varying doses of N -acetyl-paraaminophen (APAP) (250, 500, 750, and 1,000 mg/kg of weight) and sacrificed at 3, 6, 9, 24, and 48 hours. In preliminary studies, we showed that anticytokeratin antibodies detected A6-positive cells with a sensitivity and specificity of greater than 99%. The oval cell reaction was quantified, on immunostaining for biliary-type cytokeratins, as both number and density of oval cells per portal tract, analyzed by size of portal tract. Acetaminophen injury was followed by periportal oval cell accumulation displaying a moderate degree of morphological homogeneity. Oval cell response was biphasic, not temporally correlating with the single wave of injury seen histologically. Increases in oval cells were largely confined to the smallest portal tracts, in keeping with their primary derivation from the canals of Hering, and increased in a dose-dependent fashion. The timing of the two peaks of the oval cell reaction also changed with increasing dose, the first becoming earlier and the second later. In conclusion, our studies indicate a marked oval cell activation during the height of hepatic injury. Oval cells appear to be resistant to acetaminophen injury. The close fidelity of mechanism and histology of acetaminophen injury between mouse and human livers makes it a useful model for investigating liver regeneration and the participation of stem/progenitor cells in that process. (HEPATOLOGY 2005.) [source]


Characterization of Reactions to Powdery Mildew (Podosphaera pannosa) in Resistant and Susceptible Rose Genotypes

JOURNAL OF PHYTOPATHOLOGY, Issue 5 2007
A. Dewitte
Abstract Fungal development of powdery mildew Podosphaera pannosa (Wallr.: Fr.) de Bary on rose leaves depends on constitutive or induced resistance mechanisms present in attacked rose genotypes. The relationship between fungal development and plant resistance was investigated microscopically on young greenhouse leaves of four rose genotypes with different levels of resistance: Rosa wichuraiana, R. laevigata anemoides and R. hybrida cultivars ,Excelsa' and ,Gomery'. Induced plant reactions, hydrogen peroxide production and cross sections through infected leaves were examined. The variation in development of the fungus on these rose genotypes depended on the relative presence of normal haustoria, abnormal haustoria, induced cell reactions, papilla formation or physical barriers. Formation of papillae could arrest up to one third of the successful penetrations. Papillae formation was often succeeded by total cell reaction. Abnormal haustoria were detected as rudimentary haustoria, haustoria with abnormal shape or haustoria without extra haustorial matrix. Post-haustorial cell reactions, with and without cell collapse, were detected. In non-collapsed cells, appositions were directed to both cell wall and haustorium. This was followed by accumulation of non-identified, probably antifungal compounds. Both single and multicell reactions occurred. Hydrogen peroxide was detected during papilla formation and induced cell reactions. [source]


Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury

ARTHRITIS & RHEUMATISM, Issue 1 2010
Madly Brigitte
Objective Skeletal muscle may be the site of a variety of poorly understood immune reactions, particularly after myofiber injury, which is typically observed in inflammatory myopathies. This study was undertaken to explore both the cell dynamics and functions of resident macrophages and dendritic cells (DCs) in damaged muscle, using a mouse model of notexin-induced myoinjury to study innate immune cell reactions. Methods The myeloid cell reaction to notexin-induced myoinjury was analyzed by microscopy and flow cytometry. Bone marrow (BM) transplantation studies were used to discriminate resident from exudate monocyte/macrophages. Functional tests included cytokine screening and an alloantigenic mixed leukocyte reaction to assess the antigen-presenting cell (APC) function. Selective resident macrophage depletion was obtained by injection of diphtheria toxin (DT) into CD11b,DT receptor,transgenic mice transplanted with DT-insensitive BM. Results The connective tissue surrounding mouse muscle/fascicle tissue (the epimysium/perimysium) after deep muscle injury displayed a resident macrophage population of CD11b+F4/80+CD11c,Ly-6C,CX3CR1, cells, which concentrated first in the epimysium. These resident macrophages were being used by leukocytes as a centripetal migration pathway, and were found to selectively release 2 chemokines, cytokine-induced neutrophil chemoattractant and monocyte chemoattractant protein 1, and to crucially contribute to massive recruitment of neutrophils and monocytes from the blood. Early epimysial inflammation consisted of a predominance of Ly-6ChighCX3CR1lowCD11c, cells that were progressively substituted by Ly-6ClowCX3CR1high cells displaying an intermediate, rather than high, level of CD11c expression. These CD11cintermediate cells were derived from circulating CCR2+ monocytes, functionally behaved as immature APCs in the absence of alloantigenic challenge, and migrated to draining lymph nodes while acquiring the phenotype of mature DCs (CD11c+Ia+CD80+ cells, corresponding to an inflammatory DC phenotype). Conclusion The results in this mouse model show that resident macrophages in the muscle epimysium/perimysium orchestrate the innate immune response to myoinjury, which is linked to adaptive immunity through the formation of inflammatory DCs. [source]


Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
Vismadeb Mazumder
Abstract This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. [source]


Deletion of tau attenuates heat shock-induced injury in cultured cortical neurons

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2010
Yanying Miao
Abstract The microtubule-associated protein tau has been implicated in ,-amyloid- and glutamate-induced neurotoxicity. However, the potential role of tau in response to other insults to neurons remains unclear. In this study, we examined whether deletion of tau would change cell injury induced by heat shock in primary cultures of cortical neurons. After 30 min of a 45°C heat shock, lactate dehydrogenase (LDH) release increased, reaching a peak at 6 hr in wild-type (WT) neurons. A significantly lower LDH release, with a peak delayed by 24 hr, was detected in tau knockout (TKO) neurons. After heat shock treatment, MAP-2 and tubulin staining of the processes of WT neurons revealed more dramatic abnormalities than in TKO neurons. Both WT and TKO neurons exhibited a similar elevation of HSP70 level but different time courses of Akt phosphorylation. In contrast to an early, brief response in WT neurons, TKO neurons displayed a late, but long-lasting increase in phosphorylation of Akt and its downstream target, glycogen synthase kinase 3,. Additionally, inhibition of Akt activity aggravated the cell morbidity caused by heat shock exposure in both WT and TKO neurons, indicating a protective role of Akt against cell injury. In conclusion, our results demonstrate that deletion of tau attenuated heat shock-induced neuronal injury. Enhanced Akt response in the absence of endogenous tau is suggested to represent a compensatory mechanism for regulating cell reactions to stress stimuli. © 2009 Wiley-Liss, Inc. [source]


Characterization of Reactions to Powdery Mildew (Podosphaera pannosa) in Resistant and Susceptible Rose Genotypes

JOURNAL OF PHYTOPATHOLOGY, Issue 5 2007
A. Dewitte
Abstract Fungal development of powdery mildew Podosphaera pannosa (Wallr.: Fr.) de Bary on rose leaves depends on constitutive or induced resistance mechanisms present in attacked rose genotypes. The relationship between fungal development and plant resistance was investigated microscopically on young greenhouse leaves of four rose genotypes with different levels of resistance: Rosa wichuraiana, R. laevigata anemoides and R. hybrida cultivars ,Excelsa' and ,Gomery'. Induced plant reactions, hydrogen peroxide production and cross sections through infected leaves were examined. The variation in development of the fungus on these rose genotypes depended on the relative presence of normal haustoria, abnormal haustoria, induced cell reactions, papilla formation or physical barriers. Formation of papillae could arrest up to one third of the successful penetrations. Papillae formation was often succeeded by total cell reaction. Abnormal haustoria were detected as rudimentary haustoria, haustoria with abnormal shape or haustoria without extra haustorial matrix. Post-haustorial cell reactions, with and without cell collapse, were detected. In non-collapsed cells, appositions were directed to both cell wall and haustorium. This was followed by accumulation of non-identified, probably antifungal compounds. Both single and multicell reactions occurred. Hydrogen peroxide was detected during papilla formation and induced cell reactions. [source]


Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury

ARTHRITIS & RHEUMATISM, Issue 1 2010
Madly Brigitte
Objective Skeletal muscle may be the site of a variety of poorly understood immune reactions, particularly after myofiber injury, which is typically observed in inflammatory myopathies. This study was undertaken to explore both the cell dynamics and functions of resident macrophages and dendritic cells (DCs) in damaged muscle, using a mouse model of notexin-induced myoinjury to study innate immune cell reactions. Methods The myeloid cell reaction to notexin-induced myoinjury was analyzed by microscopy and flow cytometry. Bone marrow (BM) transplantation studies were used to discriminate resident from exudate monocyte/macrophages. Functional tests included cytokine screening and an alloantigenic mixed leukocyte reaction to assess the antigen-presenting cell (APC) function. Selective resident macrophage depletion was obtained by injection of diphtheria toxin (DT) into CD11b,DT receptor,transgenic mice transplanted with DT-insensitive BM. Results The connective tissue surrounding mouse muscle/fascicle tissue (the epimysium/perimysium) after deep muscle injury displayed a resident macrophage population of CD11b+F4/80+CD11c,Ly-6C,CX3CR1, cells, which concentrated first in the epimysium. These resident macrophages were being used by leukocytes as a centripetal migration pathway, and were found to selectively release 2 chemokines, cytokine-induced neutrophil chemoattractant and monocyte chemoattractant protein 1, and to crucially contribute to massive recruitment of neutrophils and monocytes from the blood. Early epimysial inflammation consisted of a predominance of Ly-6ChighCX3CR1lowCD11c, cells that were progressively substituted by Ly-6ClowCX3CR1high cells displaying an intermediate, rather than high, level of CD11c expression. These CD11cintermediate cells were derived from circulating CCR2+ monocytes, functionally behaved as immature APCs in the absence of alloantigenic challenge, and migrated to draining lymph nodes while acquiring the phenotype of mature DCs (CD11c+Ia+CD80+ cells, corresponding to an inflammatory DC phenotype). Conclusion The results in this mouse model show that resident macrophages in the muscle epimysium/perimysium orchestrate the innate immune response to myoinjury, which is linked to adaptive immunity through the formation of inflammatory DCs. [source]