Cell Protection (cell + protection)

Distribution by Scientific Domains


Selected Abstracts


Copper-dependent degradation of recombinant ovine prion protein

FEBS JOURNAL, Issue 9 2006
Phosphatidylinositol stimulates aggregation, copper-driven disappearance of prion protein
Prion protein (PrP) plays an important role in cell protection from oxidative stress due to its action as copper-chelating protein. The present study demonstrates that PrP participates in reductions of Cu2+ to Cu+ ions, and that this process results in fragmentation of protein. The interaction with phosphatidylinositol, a natural phospholipid moiety bound to PrP, strongly enhances recombinant PrP aggregation and degradation. The copper-dependent PrP degradation could promote the formation of amyloid structures, destabilizing the PrP soluble form by the cleavage of the N-terminal part. [source]


Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo,

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2006
Jérôme Alexandre
Abstract Intracellular events following paclitaxel binding to microtubules that lead to cell death remain poorly understood. Because reactive oxygen species (ROS) are involved in the cytotoxicity of anticancer agents acting through independent molecular targets, we explored the role of ROS in paclitaxel cytotoxicity. Within 15 min after in vitro exposure of A549 human lung cancer cells to paclitaxel, a concentration-dependent intracellular increase in O°2, and H2O2 levels was detected by spectrofluorometry. Addition of N -acetylcysteine (NAC) or glutathione, two H2O2 scavenger, induced a 4-fold increase in paclitaxel IC50. Delaying NAC co-incubation by 4 hr, resulted in a 3-fold reduction in cell protection. The glutathione synthesis inhibitor, buthionine sulfoximine significantly increased paclitaxel cytotoxicity and H2O2 accumulation, but did not modify O°2, levels. Co-incubation with diphenylene iodonium suggested that paclitaxel induced-O°2, production was in part associated with increased activity of cytoplasmic NADPH oxidase. Concomitant treatment with inhibitors of caspases 3 and 8 increased cell survival but did not prevent the early accumulation of H2O2. To evaluate the role of ROS in paclitaxel antitumoral activity, mice were injected with LLC1 lung cancer cells and treated with paclitaxel i.p. and/or NAC. The antitumoral activity of paclitaxel in mice was abolished by NAC. In conclusion, the accumulation of H2O2 is an early and crucial step for paclitaxel-induced cancer cell death before the commitment of the cells into apoptosis. These results suggest that ROS participate in vitro and in vivo to paclitaxel cytotoxicity. © 2006 Wiley-Liss, Inc. [source]


Urinary macromolecules and renal tubular cell protection from oxalate injury: Comparison of normal subjects and recurrent stone formers

INTERNATIONAL JOURNAL OF UROLOGY, Issue 3 2006
MASAO TSUJIHATA
Aim:, To determine whether urinary macromolecules (UMM), which are the high molecular weight substances in urine, can provide protection against the oxalate-associated injury to the renal tubular cells. Methods:, UMM were extracted from 24-h urine of 12 healthy adult male volunteers and 13 recurrent-stone-former male patients. Urine parameters in relation to urolithiasis were measured, including the level of glycosaminoglycans (GAG) in the UMM. Madin-Darby canine kidney (MDCK) cells were used to evaluate the protective activity of UMM from oxalate-induced cytotoxicity by LDH release measurement and methyl-thiazolyl tertrazolium (MTT) assay. Results:, Considering urinary parameters, citrate was significantly higher in urine from normal subjects than stone-former subjects; the other parameters show no differences between the groups. Total UMM and the level of GAG in the UMM were also significantly higher in the normal subject group. Compared with normal subject and stone-former subject UMM, after cells were treated with the UMM and then exposed to oxalate solution, LDH release was significantly higher in stone-former group. In the MTT assay, we found that more viable cells were observed after treatment with UMM compared to control in both groups. Moreover, UMM from the normal subjects showed higher protective activity against oxalate-related cytotoxicity than UMM from the stone-former subjects. Conclusion:, UMM protected renal epithelial cells from oxalate-related injury. This protective activity was found to be higher in normal subject UMM than stone-former UMM. Among other factors, a higher concentration of GAG and citrate in normal subject UMM might affect some parts in this finding. [source]


Carbon monoxide and oxidative stress in Desulfovibrio desulfuricans B-1388

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 2 2004
M. Davydova
Abstract It has been shown that carbon monoxide (CO) in low concentration may be an active biochemical and physiological regulator of cell function. The bases of CO toxicity and cell protection are not clearly understood. To provide insights into these mechanisms, we measured superoxide production by D. desulfuricans B-1388 incubated anaerobically in Postgate medium with or without 5% CO. D. desulfuricans B-1388 growing with CO in the gas phase produced more superoxide radicals then control cells growing in Ar. When the cells were pregrown with CO, NADH oxidase and peroxidase activities were increased. The increase in peroxidase activities of cells growing under CO (particularly NADH peroxidase) suggested that H2O2 was accumulated in cells. Superoxide dismutase (SOD) activity of cells decreased in exponential growth phase and increased in stationary phase. This may be due to CO concentration fall during CO oxidation by CO dehydrogenase. Altogether, our data suggest that superoxide production is a possible mechanism of CO toxicity. © 2004 Wiley Periodicals, Inc. J Biochem Mol Toxicol 18:87,91, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20011 [source]


Neuronal protection by sirtuins in Alzheimer's disease

JOURNAL OF NEUROCHEMISTRY, Issue 2 2006
Thimmappa S. Anekonda
Abstract Silent information regulator 2, a member of NAD+ -dependent histone deacetylase in yeast, and its homologs in mice and humans, participate in numerous important cell functions, including cell protection and cell cycle regulation. The sirtuin family members are highly conserved evolutionarily, and are predicted to have a role in cell survival. The science of sirtuins is an emerging field and is expected to contribute significantly to the role of sirtuins in healthy aging in humans. The role of sirtuins in neuronal protection has been studied in lower organisms, such as yeast, worms, flies and rodents. Both yeast Sir2 and mammalian sirtuin proteins are up-regulated under calorie-restricted and resveratrol treatments. Increased sirtuin expression protects cells from various insults. Caloric restriction and antioxidant treatments have shown useful effects in mouse models of aging and Alzheimer's disease (AD) and in limited human AD clinical trials. The role sirtuins may play in modifying and protecting neurons in patients with neurodegenerative diseases is still unknown. However, a recent report of Huntington's disease revealed that Sirtuin protects neurons in a Huntington's disease mouse model, suggesting that sirtuins may protect neurons in patients with neurodegenerative diseases, such as AD. In this review, we discuss the possible mechanisms of sirtuins involved in neuronal protection and the potential therapeutic value of sirtuins in healthy aging and AD. [source]


The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae

MOLECULAR MICROBIOLOGY, Issue 1 2005
Jaime Aguilera
Summary A sudden overaccumulation of methylglyoxal (MG) induces, in Saccharomyces cerevisiae, the expression of MG-protective genes, including GPD1, GLO1 and GRE3. The response is partially dependent on the transcriptional factors Msn2p/Msn4p, but unrelated with the general stress response mechanism. Here, we show that the high-osmolarity glycerol (HOG)-pathway controls the genetic response to MG and determines the yeast growth capacity upon MG exposure. Strains lacking the MAPK Hog1p, the upstream component Ssk1p or the HOG-dependent nuclear factor Msn1p, showed a reduction in the mRNA accumulation of MG-responsive genes after MG addition. Moreover, hyperactivation of Hog1p by deletion of protein phosphatase PTP2 enhanced the response, while blocking the pathway by deletion of the MAPKK PBS2 had a negative effect. In addition, the activity of Hog1p affected the basal level of GPD1 mRNA under non-inducing conditions. These effects had a great influence on MG resistance, as hog1, and other HOG-pathway mutants with impaired MG-specific expression displayed MG sensitivity, whereas those with enhanced expression exhibited MG resistance as compared with the wild-type. However, MG does not trigger the overphosphorylation of Hog1p or its nuclear import in the parental strain. Moreover, dual phosphorylation of Hog1p appears to be dispensable in the triggering of the transcriptional response, although a phosphorylable form of Hog1p is fundamental for the transcriptional activity. Overall, our results suggest that the basal activity of the HOG-pathway serves to amplify the expression of MG-responsive genes under non-inducing and inducing conditions, ensuring cell protection against this toxic glycolytic by-product. [source]


Comparison of two anoxia models in rainbow trout cells by a 2-DE and MS/MS-based proteome approach

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2008
Tune Wulff Dr.
Abstract In the literature, a variety of ways have been used to obtain anoxia, and most often results are compared between studies without taking into consideration how anoxia has been obtained. Here, we provide a comprehensive study of two types of anoxia, using a proteomics approach to compare changes in protein expression. The two investigated situations were 30,min of chemical anoxia (10,mM NaN3) followed by reoxygenation overnight (CR) and 2,h of N2 -induced anoxia (achieved by flushing with N2) followed by reoxygenation overnight (NR), after which samples were resolved by 2-DE. Forty-five protein spots changed their abundance in response to CR and 35 protein spots changed their abundance in response to NR, but only six proteins changed their abundance in response to both stimuli. By the means of MS/MS, 40 protein spots were identified including proteins involved in processes like cell protection and protein synthesis. It was also revealed that the level of a number of keratins was down-regulated. This study therefore provides a valuable comparison of two different anoxia models and shows that great care should be taken when comparing the effects of anoxia in studies that have used different types and durations of anoxia. [source]


Hepatocyte growth factor protects auditory hair cells from aminoglycosides

THE LARYNGOSCOPE, Issue 10 2009
Yayoi S. Kikkawa MD
Abstract Objectives/Hypothesis: To examine the effect of hepatocyte growth factor (HGF) for protection of auditory hair cells against aminoglycosides and its molecular mechanisms. Study Design: Experimental study. Methods: We quantitatively assessed protective effects of HGF on mouse cochlear hair cells against neomycin toxicity using explant culture systems. To understand mechanisms of hair cell protection by HGF, we examined the expression of c-Met, HGF receptor, and 4-hydroxynonenal (a lipid peroxidation marker) in the cochlea by means of immunohistochemistry and Western blotting. Results: The application of HGF to cochlear explant cultures significantly reduced the hair cell loss induced by neomycin. Immunohistochemistry showed c-Met expression in normal auditory hair cells, and its increase in response to neomycin-induced damage. Immunostaining for 4-hydroxynonenal suggested that HGF acted by attenuating the lipid peroxidation of auditory epithelia induced by neomycin. Conclusions: These findings demonstrate that a functional HGF/c-Met coupling is present in the cochlea, and HGF application exerts protective effects on hair cells, indicating the potential of HGF as a therapeutic agent for sensorineural hearing loss. Laryngoscope, 2009 [source]


Survivin mediates prostate cell protection by HIF-1, against zinc toxicity

THE PROSTATE, Issue 11 2010
Young-Joo Yun
Abstract BACKGROUND The prostate contains extremely high concentrations of zinc, but survives and grows without apparent injury. This begs the question as to how prostate cells avoid the toxic effects of zinc. In a previous study, the authors found that; HIF-1, is expressed concomitantly with the accumulation of zinc in the epithelial cells of normal rat prostates, the zinc ion stabilizes HIF-1, in prostate cells, and that HIF-1, protects prostate cells from zinc toxicity. In the present study, the authors addressed the mechanism responsible for the protective effect of HIF-1, in a high zinc environment. METHODS Immunofluorescent staining, immunoblotting, reverse transcription-polymerase chain reaction, reporter assay, and cell cycle analysis. RESULTS Survivin was induced by ZnCl2 in a HIF-1 dependent manner in both DU-145 and PNT2 prostate cells. Furthermore, HIF-1 induced survivin expression at the transcriptional level and the induction of survivin was abolished by HIF-1, knock-down. In addition, HIF-1-dependent survivin overexpression promoted prostrate cell survival and prevented cell arrest in the presence of high zinc concentrations, and si-survivin transfected cells under zinc rich conditions contained markedly higher levels of cleaved caspase-9 and PARP than si-con transfected cells. Finally, survivin expression patterns well matched rat prostate proliferation statuses. CONCLUSION Under zinc rich conditions, prostate epithelial cells HIF-1-dependently express survivin, which promotes prostate cell proliferation, and prevents apoptosis and cell cycle arrest. Accordingly, the HIF-1,-survivin pathway appears to facilitate prostate cell survival and growth in zinc rich environments, and this pathway could be a therapeutic target for the treatment of prostate hyperplasia. Prostate 70: 1179,1188, 2010. © 2010 Wiley-Liss, Inc. [source]


Oxidative stress in SEPN1 -related myopathy: From pathophysiology to treatment,

ANNALS OF NEUROLOGY, Issue 6 2009
Sandrine Arbogast PhD
Objective Mutations of the selenoprotein N gene (SEPN1) cause SEPN1 -related myopathy (SEPN1-RM), a novel early-onset muscle disorder formerly divided into four different nosological categories. Selenoprotein N (SelN) is the only selenoprotein involved in a genetic disease; its function being unknown, no treatment is available for this potentially lethal disorder. Our objective was to clarify the role of SelN and the pathophysiology of SEPN1-RM to identify therapeutic targets. Methods We established and analyzed an ex vivo model of SelN deficiency using fibroblast and myoblast primary cultures from patients with null SEPN1 mutations. DCFH assay, OxyBlot, Western blot, Fura-2, and cell survival studies were performed to measure intracellular oxidant activity, oxidative stress markers, calcium handling, and response to exogenous treatments. Results SelN-depleted cells showed oxidative/nitrosative stress manifested by increased intracellular oxidant activity (reactive oxygen species and nitric oxide) and/or excessive oxidation of proteins, including the contractile proteins actin and myosin heavy chain II in myotubes. SelN-devoid myotubes showed also Ca2+ homeostasis abnormalities suggesting dysfunction of the redox-sensor Ca2+ channel ryanodine receptor type 1. Furthermore, absence of SelN was associated with abnormal susceptibility to H2O2 -induced oxidative stress, demonstrated by increased cell death. This cell phenotype was restored by pretreatment with the antioxidant N-acetylcysteine. Interpretation SelN plays a key role in redox homeostasis and human cell protection against oxidative stress. Oxidative/nitrosative stress is a primary pathogenic mechanism in SEPN1-RM, which can be effectively targeted ex vivo by antioxidants. These findings pave the way to SEPN1-RM treatment, which would represent a first specific pharmacological treatment for a congenital myopathy. Ann Neurol 2009;65:677,686 [source]


Hypoxia attenuates effector,target cell interaction in the airway and pulmonary vascular compartment

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2007
S. Meyer
Summary Leucocyte infiltration is known to play an important role in hypoxia-induced tissue damage. However, little information is available about hypoxia and interaction of effector (neutrophils) with target cells (alveolar epithelial cells, AEC; rat pulmonary artery endothelial cells, RPAEC). The goal of this study was to elucidate hypoxia-induced changes of effector,target cell interaction. AEC and RPAEC were exposed to 5% oxygen for 2,6 h. Intercellular adhesion molecule-1 (ICAM-1) expression was determined and cell adherence as well as cytotoxicity assays were performed. Nitric oxide and heat shock protein 70 (HSP70) production was assessed in target cells. Under hypoxic conditions enhanced ICAM-1 production was found in both cell types. This resulted in an increase of adherent neutrophils to AEC and RPAEC. The death rate of hypoxia-exposed target cells decreased significantly in comparison to control cells. Nitric oxide (NO) concentration was enhanced, as was production of HSP70 in AEC. Blocking NO production in target cells resulted in increased cytotoxicity in AEC and RPAEC. This study shows for the first time that target cells are more resistant to effector cells under hypoxia, suggesting hypoxia-induced cell protection. An underlying mechanism for this phenomenon might be the protective effect of increased levels of NO in target cells. [source]