Cell Material (cell + material)

Distribution by Scientific Domains


Selected Abstracts


Testing automated liquid-based cytology samples with a manual liquid-based cytology method using residual cell suspensions from 500 ThinPrep cases

DIAGNOSTIC CYTOPATHOLOGY, Issue 6 2006
John A. Maksem M.D.
Abstract We report a technical improvement upon a previously disclosed manual liquid-based cytology (MLBC) method; and, we use the improved method to prepare slides from residual ThinPrep specimens in order to see how often ThinPrep diagnoses correspond to diagnoses derived from exhaustive examination of their parent sample suspensions. Residual cell suspensions from 500 ThinPrep cases comprising (1) 20 low-grade squamous intraepithelial lesions (LSILs); (2) 200 high risk (HR) negatives and 20 ASC-US; and (3) 260 screening cytology specimens were studied. Institutional review committee guidelines allowed us to know diagnoses by groups of specimens, but did not allow us to know individual patient diagnoses, so we could not perform case-by-case matched outcome-comparisons. Cells were concentrated by conventional centrifugation and sedimented into a polymer gel that was then vortex-mixed and converted into a viscous cell-rich suspension. The cell suspension was smeared between two clean glass slides, which were air-dried and stained with the Papanicolaou stain. Two study-sets were created, comprising one slide from each case. Each of the two study sets was examined by two cytopathologists, and discordant diagnoses were adjudicated. Because of the ambiguity involved in the "atypical" (ASC-US, ASC-H, AGC) diagnosis categories, only outcomes at the level of LSIL or greater were recorded. All MLBC SILs were digitally imaged and abnormal slides plus digital images were sent to the laboratory that provided the residual automated liquid-based cytology (ALBC) suspensions. The final diagnoses were confirmed by the laboratory that provided the residual ALBC specimens. MLBC slides of the 20 LSIL cases afforded 2 high-grade squamous intraepithelial lesions (HSILs) and 18 LSILs. Those of the 200 HR-Negatives showed 3 HSILs and 30 LSILs; and those of the 20 HR-ASC-US showed 3 HSILs and 9 LSILs. MLBC slides of the 260 screening cytology specimens showed 1 Carcinoma, 3 HSILs and 20 LSILs; affording 3 HSILs and 14 LSILs more than originally diagnosed. The MLBC method of this report is useful for preparing cell suspensions for cytological examination. Our analytical method was exhaustive and used nearly all of the cell material that was provided to us for analysis; therefore, we conclude that this approach is useful for determining how well ALBC instruments represent their parent sample suspensions. It appears that "rare events" may be overlooked when limited sample aliquots are analyzed by ALBC instruments, and this probably accounts for our increased discovery of SILs by the MLBC method. Also, SILs often present as aggregates of cohesive cells which, if overlooked or ineffectively transferred to ALBC slides, would not be diagnosed. Diagn. Cytopathol. 2006;34:391,396. © 2006 Wiley-Liss, Inc. [source]


Central nervous system neurons acquire mast cell products via transgranulation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2005
M. Wilhelm
Abstract Resting and actively degranulating mast cells are found on the brain side of the blood,brain barrier. In the periphery, exocytosis of mast cell granules results in the release of soluble mediators and insoluble granule remnants. These mast cell constituents are found in a variety of nearby cell types, acquired by fusion of granule and cellular membranes or by cellular capture of mast cell granule remnants. These phenomena have not been studied in the brain. In the current work, light and electron microscopic studies of the medial habenula of the dove brain revealed that mast cell-derived material can enter neurons in three ways: by direct fusion of the granule and plasma membranes (mast cell and neuron); by capture of insoluble granule remnants and, potentially, via receptor-mediated endocytosis of gonadotropin-releasing hormone, a soluble mediator derived from the mast cell. These processes result in differential subcellular localization of mast cell material in neurons, including free in the neuronal cytoplasm, membrane-bound in granule-like compartments or in association with small vesicles and the trans-Golgi network. Capture of granule remnants is the most frequently observed form of neuronal acquisition of mast cell products and correlates quantitatively with mast cells undergoing piecemeal degranulation. The present study indicates that mast cell-derived products can enter neurons, a process termed transgranulation, indicating a novel form of brain,immune system communication. [source]


Effect of Alkyl Side-Chain Length on Photovoltaic Properties of Poly(3-alkylthiophene)/PCBM Bulk Heterojunctions

ADVANCED FUNCTIONAL MATERIALS, Issue 20 2009
Abay Gadisa
Abstract The morphological, bipolar charge-carrier transport, and photovoltaic characteristics of poly(3-alkylthiophene) (P3AT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blends are studied as a function of alkyl side-chain length m, where m equals the number of alkyl carbon atoms. The P3ATs studied are poly(3-butylthiophene) (P3BT, m,=,4), poly(3-pentylthiophene) (P3PT, m,=,5), and poly(3-hexylthiophene) (P3HT, m,=,6). Solar cells with these blends deliver similar order of photo-current yield (exceeding 10,mA cm,2) irrespective of side-chain length. Power conversion efficiencies of 3.2, 4.3, and 4.6% are within reach using solar cells with active layers of P3BT:PCBM (1:0.8), P3PT:PCBM (1:1), and P3HT:PCBM (1:1), respectively. A difference in fill factor values is found to be the main source of efficiency difference. Morphological studies reveal an increase in the degree of phase separation with increasing alkyl chain length. Moreover, while P3PT:PCBM and P3HT:PCBM films have similar hole mobility, measured by hole-only diodes, the hole mobility in P3BT:PCBM lowers by nearly a factor of four. Bipolar measurements made by field-effect transistor showed a decrease in the hole mobility and an increase in the electron mobility with increasing alkyl chain length. Balanced charge transport is only achieved in the P3HT:PCBM blend. This, together with better processing properties, explains the superior properties of P3HT as a solar cell material. P3PT is proved to be a potentially competitive material. The optoelectronic and charge transport properties observed in the different P3AT:PCBM bulk heterojunction (BHJ) blends provide useful information for understanding the physics of BHJ films and the working principles of the corresponding solar cells. [source]


Three-Dimensional Solar Cell Finite-Element Sintering Simulation

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2009
Gordon R. Brown
The sintering process is ubiquitous in manufacturing, but the design-oriented modeling of sintering has presented considerable challenges. This type of modeling is necessary to be able to predict deformation and thus design appropriate powder compacts so that after they are sintered, the desired dimensions will be achieved. Currently this is done through a costly and time-consuming trial and error process. In our research, an application of the Skorohod,Olevsky viscous sintering constitutive equation in a finite-element (FE) model is developed and used to model solar cell manufacturing. Experimental measurements are used to determine the properties of the solar cell materials, and these are used to calculate the parameters for the FE model. Simulation results are compared with experimental data and analysis has been made to evaluate the adequacy and usefulness of this approach. [source]


Chemical natures and distributions of metal impurities in multicrystalline silicon materials

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 6 2006
T. Buonassisi
Abstract We present a comprehensive summary of our observations of metal-rich particles in multicrystalline silicon (mc-Si) solar cell materials from multiple vendors, including directionally-solidified ingot-grown, sheet, and ribbon, as well as multicrystalline float zone materials contaminated during growth. In each material, the elemental nature, chemical states, and distributions of metal-rich particles are assessed by synchrotron-based analytical x-ray microprobe techniques. Certain universal physical principles appear to govern the behavior of metals in nearly all materials: (a) Two types of metal-rich particles can be observed (metal silicide nanoprecipitates and metal-rich inclusions up to tens of microns in size, frequently oxidized), (b) spatial distributions of individual elements strongly depend on their solubility and diffusivity, and (c) strong interactions exist between metals and certain types of structural defects. Differences in the distribution and elemental nature of metal contamination between different mc-Si materials can largely be explained by variations in crystal growth parameters, structural defect types, and contamination sources. Copyright © 2006 John Wiley & Sons, Ltd. [source]