Cell Injury (cell + injury)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Cell Injury

  • endothelial cell injury
  • oxidative cell injury
  • renal tubular cell injury
  • sinusoidal endothelial cell injury
  • tubular cell injury


  • Selected Abstracts


    Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury

    ADVANCED FUNCTIONAL MATERIALS, Issue 6 2009
    Guy Applerot
    Abstract An innovative study aimed at understanding the influence of the particle size of ZnO (from the microscale down to the nanoscale) on its antibacterial effect is reported herein. The antibacterial activity of ZnO has been found to be due to a reaction of the ZnO surface with water. Electron-spin resonance measurements reveal that aqueous suspensions of small nanoparticles of ZnO produce increased levels of reactive oxygen species, namely hydroxyl radicals. Interestingly, a remarkable enhancement of the oxidative stress, beyond the level yielded by the ZnO itself, is detected following the antibacterial treatment. Likewise, an exposure of bacteria to the small ZnO nanoparticles results in an increased cellular internalization of the nanoparticles and bacterial cell damage. An examination of the antibacterial effect is performed on two bacterial species: Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive). The nanocrystalline particles of ZnO are synthesized using ultrasonic irradiation, and the particle sizes are controlled using different solvents during the sonication process. Taken as a whole, it is apparent that the unique properties (i.e., small size and corresponding large specific surface area) of small nanometer-scale ZnO particles impose several effects that govern its antibacterial action. These effects are size dependent and do not exist in the range of microscale particles. [source]


    Neuroprotection by melatonin from glutamate-induced excitotoxicity during development of the cerebellum in the chick embryo

    JOURNAL OF PINEAL RESEARCH, Issue 2 2000
    Auxiliadora Espinar
    This work investigated the ability of melatonin to prevent cell damage in the cerebellar cortex of chick embryo caused by glutamate administration. Cell injury was evaluated estimating, at ultrastructural level, the phenomenon of cell death and the synaptogenesis of the Purkinje cells and the cerebellar glomerular synaptic complex. Administration of glutamate during cerebellar development of the chick provokes excitotoxic neuronal degeneration characterized by a phenomenon of neuronal cell death that exhibits essentially the features of a death pattern described as necrosis and the deletion of synaptogenic processes. Our results show that melatonin has a neuroprotective effect against glutamate-induced excitotoxicity. This effect is morphologically revealed by the lack of neural cell death in the embryos treated with melatonin prior to glutamate injection and also by the degree of a synaptogenesis similar to that exhibited by the control group. Likewise, we corroborate the absence of teratological effects of melatonin on chick cerebellar development. Although the possible mechanisms involved in the neuroprotective effect of melatonin are discussed, i.e., direct antioxidant effects, up-regulating endogenous antioxidant defenses, and inhibiting nitric oxide formation activated by glutamate, further studies are required to establish the actual mechanism involved in the neuroprotective effect of melatonin. [source]


    Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
    Jose L. Perez Velazquez
    Abstract While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18,-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries. [source]


    Penicillium chrysogenum glucose oxidase , a study on its antifungal effects

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2004
    É. Leiter
    Abstract Aims:, Purification and characterization of the high molecular mass Candida albicans -killing protein secreted by Penicillium chrysogenum. Methods and Results:, The protein was purified by a combination of ultrafiltration, chromatofocusing and gel filtration. Enzymological characteristics [relative molecular mass (Mr) = 155 000, subunit structure ,2 with Mr,, = 76 000, isoelectric point (pI) = 5·4] were determined using SDS-PAGE and 2D-electrophoresis. N-terminal amino acid sequencing and homology search demonstrated that the antifungal protein was the glucose oxidase (GOX) of the fungus. The enzyme was cytotoxic for a series of bacteria, yeasts and filamentous fungi. Vitamin C (1·0 mg ml,1) prevented oxidative cell injuries triggered by 0·004 U GOX in Emericella nidulans cultures but bovine liver catalase was ineffective even at a GOX : catalase activity ratio of 0·004 : 200 U. A secondary inhibition of growth in E. nidulans cultures by the oxygen-depleting GOX,catalase system was likely to replace the primary inhibition exerted by H2O2. Conclusions:,Penicillium chrysogenum GOX possesses similar enzymological features to those described earlier for other Penicillium GOXs. Its cytotoxicity was dependent on the inherent antioxidant potential of the test micro-organisms. Significance and Impact of the Study:,Penicillium chrysogenum GOX may find future applications in glucose biosensor production, the disinfection of medical implants or in the food industry as an antimicrobial and/or preservative agent. [source]


    Role of MAPK phosphorylation in cytoprotection by pro-vitamin C against oxidative stress-induced injuries in cultured cardiomyoblasts and perfused rat heart

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2003
    Masahiro Eguchi
    Abstract The reactive oxygen species (ROS) are known to be generated upon post-ischemic reperfusion (I/R) of the heart, and to injure cardiac muscle cells. The hydrogen peroxide-induced mortality of rat cardiomyoblasts H2c9 was markedly inhibited by previous administration with auto-oxidation-resistant pro-vitamin C, the 2- O -phosphorylated derivative (Asc2P) of ascorbic acid (Asc). The cytoprotection was partially counteracted by an inhibitor of MAPK (mitogen-activated protein kinase) kinase (MEK) as shown by DNA strand cleavage assay and mitochondrial dehydrogenase assay. Immunostains indicated that phosphorylated MAPK increased in the hydrogen peroxide-treated cardiomyoblasts, and that this action was moderately inhibited by Asc2P and restored nearly to the initial, pretreatment level by combined administration of the MEK inhibitor and Asc2P. The I/R-induced cell injuries in perfused rat hearts as estimated by extracellular release of the cardiac enzyme CPK were inhibited by 2- O -,-glucosylascorbic acid (Asc2G) and Asc, whereas the observed cytoprotection for the cardiomyoblasts was partially counteracted by the MEK inhibitor. The increase in phosphorylated MAPK in I/R-operated hearts was moderately inhibited by pro-vitamin C, but restored nearly to the normal non-operated level by combined administration with the MEK inhibitor. This is in contrast to no alteration in levels of non-phosphorylated MAPK for all the cases examined as shown by Western blots, consistent with results of immunostains for the cardiomyoblasts. The inhibitory effect of the MEK inhibitor on MAPK phosphorylation was, therefore, suggested to counteract the cytoprotective effects of pro-vitamin C via a thorough interruption of the phosphorylated MAPK signaling pathway. This was not true of ROS-related events; the scavenging effects of Asc2G and Asc on hydroxyl radicals generated from I/R-operated heart were not affected by combined administration with the MEK inhibitor, as shown by the spin-trapping DMPO-based ESR method. J. Cell. Biochem. 90: 219,226, 2003. © 2003 Wiley-Liss, Inc. [source]


    Conversion of the Synthetic Catalase Mimic Precursor TAA-1 into the Active Catalase Mimic in Isolated Hepatocytes

    CHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2009
    Ursula Rauen
    In previous studies we reported on the catalase-like activity and antioxidative properties of a non-heme Fe(III)-tetraaza[14]annulene complex, 5,4-didehydro-5,9,14,18-tetraaza-di(2,2-dimethyl-[5,6]benzo[1,3]dioxolo)[a,h]cyclotetradecene,Fe(III) chloride (TAA-1/Fe). We proposed that intracellular application of the parent, iron-free tetraaza[14]annulene ligand, TAA-1, as precursor would allow antioxidative defense along two lines, i.e. by chelation of potentially toxic cellular iron ions and, subsequently, by catalase-mimic activity. We here set out to establish whether the active catalase mimic is indeed formed intracellularly when cells are loaded with the ligand. When isolated rat hepatocytes were preloaded with TAA-1, they were protected against iron-induced cell injury and oxidative stress elicited by exposure to the membrane-permeable iron complex Fe(III)/8-hydroxyquinoline. After lysis of the cells, followed by ultrafiltration to remove endogenous catalase, the lysate exhibited catalase-like activity, while lysates of control cells not treated with TAA-1 showed no catalase-like activity. By comparison with authentic TAA-1/Fe, an intracellular formation of 2.0 ± 0.3 ,m of the active catalase mimic in native hepatocytes exposed to TAA-1 and of 6.5 ± 1.0 ,m in hepatocytes exposed to both TAA-1 and iron ions was estimated. The intracellular formation of the active catalase mimic thus renders TAA-1 an attractive compound for protection against iron- and/or hydrogen peroxide-dependent cell injuries. [source]


    The role of free fatty acids, pancreatic lipase and Ca2+ signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipase-deficient mice

    ACTA PHYSIOLOGICA, Issue 1 2009
    F. Yang
    Abstract Aim and methods:, Recurrent pancreatitis is a common complication of severe hypertriglyceridaemia (HTG) often seen in patients carrying various gene mutations in lipoprotein lipase (LPL). This study investigates a possible pathogenic mechanism of cell damage in isolated mouse pancreatic acinar cells and of pancreatitis in LPL-deficient and in wild type mice. Results:, Addition of free fatty acids (FFA) or of chylomicrons to isolated pancreatic acinar cells caused stimulation of amylase release, and at higher concentrations it also caused cell damage. This effect was decreased in the presence of the lipase inhibitor orlistat. Surprisingly, pancreatic lipase whether in its active or inactive state could act like an agonist by inducing amylase secretion, increasing cellular cGMP levels and converting cell damaging sustained elevations of [Ca2+]cyt to normal Ca2+ oscillations. Caerulein increases the levels of serum amylase and caused more severe inflammation in the pancreas of LPL-deficient mice than in wild type mice. Conclusion:, We conclude that high concentrations of FFA as present in the plasma of LPL-deficient mice and in patients with HTG lead to pancreatic cell damage and are high risk factors for the development of acute pancreatitis. In addition to its enzymatic effect which leads to the generation of cell-damaging FFA from triglycerides, pancreatic lipase also prevents Ca2+ overload in pancreatic acinar cells and, therefore, counteracts cell injury. [source]


    The developing embryonic cardiac outflow tract is highly sensitive to oxidant stress

    DEVELOPMENTAL DYNAMICS, Issue 12 2007
    Steven A. Fisher
    Abstract This study tested the hypothesis that the remodeling of the cardiac outflow tract (OFT) may represent a developmental window of vulnerability to reactive oxygen species (ROS). Chick embryos were exposed in ovo or ex ovo to increasing concentrations of the stable oxidant hydrogen peroxide (H2O2). As assessed by trypan blue staining, H2O2 induced cell injury in the stage 25,30 OFT at concentrations as low as 1 nM. Higher concentrations were required to induce cell injury in the ventricular and atrial myocardium. Using DCFDA as an indicator of oxidant stress, H2O2 also induced a greater fluorescent signal in the OFT myocardium. H2O2 at these low concentrations also induced Caspase activity, indicative of activation of the pathway of PCD. Interestingly, the induction of Caspase-3 activity was predominately in the OFT cushion mesenchymal cells. Thus, the developing OFT is particularly sensitive to ROS-mediated injury, suggesting that ROS could play a role in the development of congenital defects of the cardiac OFT. Developmental Dynamics 236:3496,3502, 2007. © 2007 Wiley-Liss, Inc. [source]


    Death and survival of heterozygous Lurcher Purkinje cells In vitro

    DEVELOPMENTAL NEUROBIOLOGY, Issue 8 2009
    Hadi S. Zanjani
    Abstract The differentiation and survival of heterozygous Lurcher (+/Lc) Purkinje cells in vitro was examined as a model system for studying how chronic ionic stress affects neuronal differentiation and survival. The Lurcher mutation in the ,2 glutamate receptor (GluR,2) converts an orphan receptor into a membrane channel that constitutively passes an inward cation current. In the GluR,2+/Lc mutant, Purkinje cell dendritic differentiation is disrupted and the cells degenerate following the first week of postnatal development. To determine if the GluR,2+/Lc Purkinje cell phenotype is recapitulated in vitro, +/+, and +/Lc Purkinje cells from postnatal Day 0 pups were grown in either isolated cell or cerebellar slice cultures. GluR,2+/+ and GluR,2+/Lc Purkinje cells appeared to develop normally through the first 7 days in vitro (DIV), but by 11 DIV GluR,2+/Lc Purkinje cells exhibited a significantly higher cation leak current. By 14 DIV, GluR,2+/Lc Purkinje cell dendrites were stunted and the number of surviving GluR,2+/Lc Purkinje cells was reduced by 75% compared to controls. However, treatment of +/Lc cerebellar cultures with 1-naphthyl acetyl spermine increased +/Lc Purkinje cell survival to wild type levels. These results support the conclusion that the Lurcher mutation in GluR,2 induces cell autonomous defects in differentiation and survival. The establishment of a tissue culture system for studying cell injury and death mechanisms in a relatively simple system like GluR,2+/Lc Purkinje cells will provide a valuable model for studying how the induction of a chronic inward cation current in a single cell type affects neuronal differentiation and survival. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


    Activation of JNK and PAK2 is essential for citrinin-induced apoptosis in a human osteoblast cell line

    ENVIRONMENTAL TOXICOLOGY, Issue 4 2009
    Yu-Ting Huang
    Abstract The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. Previous studies by our group showed that CTN triggers apoptosis in mouse embryonic stem cells, as well as embryonic developmental injury. Here, we investigated the precise mechanisms governing this apoptotic effect in osteoblasts. CTN induced apoptotic biochemical changes in a human osteoblast cell line, including activation of c-Jun N-terminal kinase (JNK), loss of mitochondrial membrane potential, and caspase-3 and p21-activated protein kinase 2 (PAK2) activation. Experiments using a JNK-specific inhibitor, SP600125, and antisense oligonucleotides against JNK reduced CTN-induced activation of both JNK and caspase-3 in osteoblasts, indicating that JNK is required for caspase activation in this apoptotic pathway. Experiments using caspase-3 inhibitors and antisense oligonucleotides against PAK2 revealed that active caspase-3 is essential for PAK2 activation. Moreover, both caspase-3 and PAK2 require activation for CTN-induced apoptosis of osteoblasts. Interestingly, CTN stimulates two-stage activation of JNK in human osteoblasts. Early-stage JNK activation is solely ROS-dependent, whereas late-stage activation is dependent on ROS-mediated caspase activity, and regulated by caspase-induced activation of PAK2. On the basis of these results, we propose a signaling cascade model for CTN-induced apoptosis in human osteoblasts involving ROS, JNK, caspases, and PAK2. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source]


    Repeat intrathecal triamcinolone acetonide application is beneficial in progressive MS patients

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 1 2006
    V. Hoffmann
    Available immunomodulatory and conventional steroid treatment regimens provide a limited symptomatic benefit for patients with progressive multiple sclerosis (MS). We performed an open trial on the short-term efficacy of repeated intrathecal application of the sustained release steroid triamcinolone acetonide (TCA) in 27 progressive MS patients. Six TCA administrations, performed every third day, reduced the Expanded Disability Status Scale (EDSS) score [initial: 5.4 ± 1.3, 3,7.5 (mean ± SD, range); end: 4.9 ± 1.1; 2.5,6.5; P < 0.001] and significantly increased the walking distance and speed in particular after the fourth TCA injection. Concomitantly serially determined cerebrospinal fluid (CSF) markers of cell injury, neuron-specific enolase, total , -protein, S-100, and , -amyloid did not significantly change within the interval of TCA treatment. No serious side effects appeared. We conclude that repeat intrathecal injection of 40 mg TCA provides a substantial benefit in progressive MS patients with predominant spinal symptoms and does not alter CSF markers of neuronal cell injury. [source]


    Complement and its implications in cardiac ischemia/reperfusion: strategies to inhibit complement

    FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 5 2001
    Tiphaine Monsinjon
    Although reperfusion of the ischemic myocardium is an absolute necessity to salvage tissue from eventual death, it is also associated with pathologic changes that represent either an acceleration of processes initiated during ischemia or new pathophysiological changes that were initiated after reperfusion. This so-called ,reperfusion injury' is accompanied by a marked inflammatory reaction, which contributes to tissue injury. In addition to the well known role of oxygen free radicals and white blood cells, activation of the complement system probably represents one of the major contributors of the inflammatory reaction upon reperfusion. The complement may be activated through three different pathways: the classical, the alternative, and the lectin pathway. During reperfusion, complement may be activated by exposure to intracellular components such as mitochondrial membranes or intermediate filaments. Two elements of the activated complement contribute directly or indirectly to damages: anaphylatoxins (C3a and C5a) and the membrane attack complex (MAC). C5a, the most potent chemotactic anaphylatoxin, may attract neutrophils to the site of inflammation, leading to superoxide production, while MAC is deposited over endothelial cells and smooth vessel cells, leading to cell injury. Experimental evidence suggests that tissue salvage may be achieved by inhibition of the complement pathway. As the complement is composed of a cascade of proteins, it provides numerous sites for pharmacological interventions during acute myocardial infarction. Although various strategies aimed at modulating the complement system have been tested, the ideal approach probably consists of maintaining the activity of C3 (a central protein of the complement cascade) and inhibiting the later events implicated in ischemia/reperfusion and also in targeting inhibition in a tissue-specific manner. [source]


    Anti-disialosyl antibodies mediate selective neuronal or Schwann cell injury at mouse neuromuscular junctions

    GLIA, Issue 3 2005
    Susan K. Halstead
    Abstract The human paralytic neuropathy, Miller Fisher syndrome (MFS) is associated with autoantibodies specific for disialosyl epitopes on gangliosides GQ1b, GT1a, and GD3. Since these gangliosides are enriched in synaptic membranes, anti-ganglioside antibodies may target neuromuscular junctions (NMJs), thereby contributing to disease symptoms. We have shown previously that at murine NMJs, anti-disialosyl antibodies induce an ,-latrotoxin-like effect, electrophysiologically characterized by transient massive increase of spontaneous neurotransmitter release followed by block of evoked release, resulting in paralysis of the muscle preparation. Morphologically, motor nerve terminal damage, as well as perisynaptic Schwann cell (pSC) death is observed. The relative contributions of neuronal and pSC injury to the paralytic effect and subsequent repair are unknown. In this study, we have examined the ability of subsets of anti-disialosyl antibodies to discriminate between the neuronal and glial elements of the NMJ and thereby induce either neuronal injury or pSC death. Most antibodies reactive with GD3 induced pSC death, whereas antibody reactivity with GT1a correlated with the extent of nerve terminal injury. Motor nerve terminal injury resulted in massive uncontrolled exocytosis with paralysis. However, pSC ablation induced no acute (within 1 h) electrophysiological or morphological changes to the underlying nerve terminal. These data suggest that at mammalian NMJs, acute pSC injury or ablation has no major deleterious influence on synapse function. Our studies provide evidence for highly selective targeting of mammalian NMJ membranes, based on ganglioside composition, that can be exploited for examining axonal,glial interactions both in disease states and in normal NMJ homeostasis. © 2005 Wiley-Liss, Inc. [source]


    Quantitative isolation of ,1AT mutant Z protein polymers from human and mouse livers and the effect of heat,

    HEPATOLOGY, Issue 1 2005
    Jae-Koo An
    Alpha-1-antitrypsin (,1AT) deficiency in its most common form is caused by homozygosity for the ,1AT mutant Z gene. This gene encodes a mutant Z secretory protein, primarily synthesized in the liver, that assumes an abnormal conformation and accumulates within hepatocytes causing liver cell injury. Studies have shown that mutant ,1ATZ protein molecules form unique protein polymers. These Z protein polymers have been hypothesized to play a critical role in the pathophysiology of liver injury in this disease, although a lack of quantitative methods to isolate the polymers from whole liver has hampered further analysis. In this study, we demonstrate a quantitative ,1ATZ polymer isolation technique from whole liver and show that the hepatocellular periodic acid-Schiff,positive globular inclusions that are the histopathological hallmark of this disease are composed almost entirely of the polymerized ,1ATZ protein. Furthermore, we examine the previously proposed but untested hypothesis that induction of ,1ATZ polymerization by the heat of physiological fever is part of the mechanism of hepatic ,1ATZ protein accumulation. The results, however, show that fever-range temperature elevations have no detectable effect on steady-state levels of intrahepatic Z protein polymer in a model in vivo system. In conclusion, methods to separate insoluble protein aggregates from liver can be used for quantitative isolation of ,1ATZ protein polymers, and the effect of heat from physiological fever may be different in vivo compared with in vitro systems. (HEPATOLOGY 2005;41:160,167.) [source]


    Induction of cellular resistance against Kupffer cell,derived oxidant stress: A novel concept of hepatoprotection by ischemic preconditioning

    HEPATOLOGY, Issue 2 2003
    Rolf J. Schauer
    Ischemic preconditioning (IP) triggers protection of the liver from prolonged subsequent ischemia. However, the underlying protective mechanisms are largely unknown. We investigated whether and how IP protects the liver against reperfusion injury caused by Kupffer cell (KC)-derived oxidants. IP before 90 minutes of warm ischemia of rat livers in vivo significantly reduced serum alanine aminotransferase (AST) levels and leukocyte adherence to sinusoids and postsinusoidal venules during reperfusion. This protective effect was mimicked by postischemic intravenous infusion of glutathione (GSH), an antioxidative strategy against KC-derived H2O2. Interestingly, no additional protection was achieved by infusion of GSH to preconditioned animals. These findings and several additional experiments strongly suggest IP mediated antioxidative effects: IP prevented oxidant cell injury in isolated perfused rat livers after selective KC activation by zymosan. Moreover, IP prevented cell injury and pertubations of the intracellular GSH/GSSG redox system caused by direct infusion of H2O2 (0.5 mmol/L). IP-mediated resistance against H2O2 could neither be blocked by the adenosine A2a antagonist DMPX nor mimicked by A2a agonist CGS21680. In contrast, H2O2 resistance was abolished by the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, but induced when p38 MAPK was directly activated by anisomycin. In conclusion, we propose a novel concept of hepatoprotection by IP: protection of liver cells by enhancing their resistance against KC-derived H2O2. Activation of p38 MAPK and preservation of the intracellular GSH/oxidized glutathione (GSSG) redox system, but not adenosine A2a receptor stimulation, seems to be pivotal for the development of H2O2 resistance in preconditioned livers. [source]


    Cold-induced apoptosis of rat liver cells in University of Wisconsin solution: The central role of chelatable iron

    HEPATOLOGY, Issue 3 2002
    Uta Kerkweg
    Although University of Wisconsin (UW) solution aims at the prevention of cold-induced cell injury, it failed to protect against cold-induced apoptosis of hepatocytes and liver endothelial cells: when incubated in UW solution at 4°C for 24 hours and subsequently rewarmed at 37°C, 72% ± 8% of rat hepatocytes and 81% ± 5% of liver endothelial cells lost viability. In both cell types, the observed cell damage occurred under an apoptotic morphology; it appeared to be mediated by a rapid increase in the cellular chelatable iron pool by a factor ,2 (as determined in hepatocytes) and subsequent formation of reactive oxygen species (ROS). Consequently, this cell injury was decreased by iron chelators to 6 to 25% (hepatocytes) and 4% ± 2% (liver endothelial cells). Deferoxamine nearly completely inhibited the occurrence of apoptotic morphology in both cell types. In liver endothelial cells, cold-induced apoptosis occurring during rewarming after 24 hours of cold incubation in UW solution was far more pronounced than in cell culture medium (loss of viability: 81% ± 5% vs. 28% ± 13%), but viability could even be maintained for 2 weeks of cold incubation by use of deferoxamine. In conclusion, this pathological mechanism might be an explanation for the strong endothelial cell injury known to occur after cold preservation. With regard to the extent of this iron-mediated injury, addition of a suitable iron chelator to UW solution might markedly improve the outcome of liver preservation. [source]


    Pathophysiologic importance of E- and L-selectin for neutrophil-induced liver injury during endotoxemia in mice

    HEPATOLOGY, Issue 5 2000
    Judy A. Lawson
    Neutrophils can cause parenchymal cell injury in the liver during ischemia-reperfusion and endotoxemia. Neutrophils relevant for the injury accumulate in sinusoids, transmigrate, and adhere to hepatocytes. To investigate the role of E- and L-selectin in this process, C3Heb/FeJ mice were treated with 700 mg/kg galactosamine and 100 ,g/kg endotoxin (Gal/ET). Immunogold labeling verified the expression of E-selectin on sinusoidal endothelial cells 4 hours after Gal/ET injection. In addition, Gal/ET caused up-regulation of Mac-1 (CD11b/CD18) and shedding of L-selectin from circulating neutrophils. Gal/ET induced hepatic neutrophil accumulation (422 ± 32 polymorphonuclear leukocytes [PMN]/50 high power fields [HPF]) and severe liver injury (plasma alanine transaminase [ALT] activities: 4,120 ± 960 U/L; necrosis: 44 ± 3%) at 7 hours. Treatment with an anti,E-selectin antibody (3 mg/kg, intravenously) at the time of Gal/ET administration did not significantly affect hepatic neutrophil accumulation and localization. However, the anti,E-selectin antibody significantly attenuated liver injury as indicated by reduced ALT levels (,84%) and 43% less necrotic hepatocytes. In contrast, animals treated with an anti,L-selectin antibody or L-selectin gene knock out mice were not protected against Gal/ET-induced liver injury. However, E-, L-, and P-selectin triple knock out mice showed significantly reduced liver injury after Gal/ET treatment as indicated by lower ALT levels (,65%) and reduced necrosis (,68%). Previous studies showed that circulating neutrophils of E-selectin,overexpressing mice are primed and activated similar to neutrophils adhering to E-selectin in vitro. Therefore, we conclude that blocking E-selectin or eliminating this gene may have protected against Gal/ET-induced liver injury in vivoby inhibiting the full activation of neutrophils during the transmigration process. [source]


    Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 3 2010
    Lipi Singh
    Summary Chemokines have been known to play a critical role in pathogenesis of chronic pancreatitis and acinar cell death. However, the role played by one of the CXC chemokines: CXCL10 in regulation of acinar cell death has remained unexplored. Hence, this study was designed to assess the role of CXCL10 promoting apoptosis in ex vivo cultured acinar cells. Primary human pancreatic acinar cell cultures were established and exposed to varying doses of CXCL10 for different time intervals. Apoptotic induction was evaluated by both qualitative as well as quantitative analyses. Various mediators of apoptosis were also studied by Western blotting, membrane potential (,m) and ATP depletion in acinar cells. Analysis of apoptosis via DNA ladder and cell death detection , ELISA demonstrated that CXCL10 induced 3.9-fold apoptosis when administrated at an optimal dose of 0.1 ,g of recombinant CXCL10 for 8 h. Quantitative analysis using FACS and dual staining by PI-annexin showed increased apoptosis (48.98 and 53.78% respectively). The involvement of upstream apoptotic regulators like pJNK, p38 and Bax was established on the basis of their increased expression of CXCL10. The change of ,m by 50% was observed in the presence of CXCL10 in treated acinar cells along with enhanced expression of Cytochrome C, apaf-1 and caspase 9/3 activation. In addition, ATP depletion was also noticed in CXCL10 stimulated acinar cells. CXCL10 induces cell death in human cultured pancreatic cells leading to apoptosis and DNA fragmentation via CXCR3 signalling. These signalling mechanisms may play an important role in parenchymal cell loss and injury in pancreatitis. [source]


    Morphological features of Murray Valley encephalitis virus infection in the central nervous system of swiss mice

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2000
    Vance Matthews
    We have examined the histological and ultrastructural features of CNS infection with Murray Valley encephalitis (MVE) virus in mice inoculated with a virulent parental strain (BH3479). Light microscopic examination revealed neuronal necrosis in the olfactory bulb and hippocampus of MVE-infected brains by 5 days post-infection (pi). Electron microscopy of these regions showed endoplasmic reticulum membrane proliferation, and tubular and spherical structures in the cisternae of the endoplasmic reticulum, Golgi complex and nuclear envelope. At seven to eight days pi, infected neurones exhibited chromatin condensation and extrusion, nuclear fragmentation, loss of segments of the nuclear envelope, reduced surface contact with adjacent cells and loss of cytoplasmic organelles. This cell injury was particularly noticeable in the proximal CA3 and distal CA1 regions of the hippocampus. The inflammatory cell profile consisted of macrophages, lymphocytes and especially neutrophils, and many of these inflammatory cells were apoptotic. High mortality rates in the BH3479-infected population of mice correlated with the intense polymorphonuclear and mononuclear leucocyte inflammatory infiltrate in the CNS. [source]


    Editorial Comment to renal tubular epithelial cell injury and oxidative stress induce calcium oxalate crystal formation in mouse kidney

    INTERNATIONAL JOURNAL OF UROLOGY, Issue 1 2010
    Tohru Umekawa md phd
    No abstract is available for this article. [source]


    Mechanism of calcium oxalate renal stone formation and renal tubular cell injury

    INTERNATIONAL JOURNAL OF UROLOGY, Issue 2 2008
    Masao Tsujihata
    Abstract: Formation of calcium oxalate stones tends to increase with age and begins from the attachment of a crystal formed in the cavity of renal tubules to the surface of renal tubular epithelial cells. Though most of the crystals formed in the cavity of renal tubules are discharged as is in the urine, in healthy people, crystals that attach to the surface of renal tubular epithelial cells are thought to be digested by macrophages and/or lysosomes inside of cells. However, in individuals with hyperoxaluria or crystal urine, renal tubular cells are injured and crystals easily become attached to them. Various factors are thought to be involved in renal tubular cell injury. Crystals attached to the surface of renal tubular cells are taken into the cells (crystal,cell interaction). And then the crystal and crystal aggregates grow, and finally a stone is formed. [source]


    Biochemical and ultrastructural alterations in the rat ventral prostate due to repetitive alcohol drinking

    JOURNAL OF APPLIED TOXICOLOGY, Issue 4 2007
    M. I. Díaz Gómez
    Abstract Previous studies showed that cytosolic and microsomal fractions from rat ventral prostate are able to biotransform ethanol to acetaldehyde and 1-hydroxyethyl radicals via xanthine oxidase and a non P450 dependent pathway respectively. Sprague Dawley male rats were fed with a Lieber and De Carli diet containing ethanol for 28 days and compared against adequately pair-fed controls. Prostate microsomal fractions were found to exhibit CYP2E1-mediated hydroxylase activity significantly lower than in the liver and it was induced by repetitive ethanol drinking. Ethanol drinking led to an increased susceptibility of prostatic lipids to oxidation, as detected by t-butylhydroperoxide-promoted chemiluminiscence emission and increased levels of lipid hydroperoxides (xylenol orange method). Ultrastructural alterations in the epithelial cells were observed. They consisted of marked condensation of chromatin around the perinuclear membrane, moderate dilatation of the endoplasmic reticulum and an increased number of epithelial cells undergoing apoptosis. The prostatic alcohol dehydrogenase activity of the stock rats was 4.84 times lower than that in the liver and aldehyde dehydrogenase activity in their microsomal, cytosolic and mitochondrial fractions was either not detectable or significantly less intense than in the liver. A single dose of ethanol led to significant acetaldehyde accumulation in the prostate. The results suggest that acetaldehyde accumulation in prostate tissue might result from both acetaldehyde produced in situ but also because of its low aldehyde dehydrogenase activity and its poor ability to metabolize acetaldehyde arriving via the blood. Acetaldehyde, 1-hydroxyethyl radical and the oxidative stress produced may lead to epithelial cell injury. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Paradoxical enhancement of oxidative cell injury by overexpression of heme oxygenase-1 in an anchorage-dependent cell ECV304

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2004
    Keiko Maruhashi
    Abstract There has been increasing evidence suggesting the potent anti-inflammatory roles of heme oxygenase-1 (HO-1) in protecting renal tubular epithelial cells, vascular endothelial cells, and circulating monocytes. Based on these findings, novel therapeutic interventions have been proposed to control the expression of endothelial HO-1 levels to ameliorate various vascular diseases. We evaluated the effect of HO-1 gene transfer into an anchorage-dependent cell, ECV304. Effect of HO-1 production on the cell injury induced by hydrogen peroxide was evaluated after hemin stimulation and after HO-1 gene transfection. Morphological changes and the induction of various anti-apoptotic proteins were examined at the same time. Levels of HO-1 expression were variable in different clones of HO-1-transfected ECV304 cells. Among these, the clones with moderate levels of HO-1 expression were significantly more resistant to oxidative stress. In contrast, those with the highest levels of HO-1 exhibited paradoxically enhanced susceptibility to oxidative injury. Interestingly, the cell survival after oxidative stress was in parallel with the levels of Bcl-2 expression and of fibronectin receptor, ,5 integrin. It is suggested from these results, that excessive HO-1 not only leads to enhanced cell injury, but also prolongs the repair process of the injured endothelial tissue. However, HO-1 reduces the oxidative cell injury and protects the endothelial cells, if its expression is appropriately controlled. © 2004 Wiley-Liss, Inc. [source]


    Induction of oxidative stress by homocyst(e)ine impairs endothelial function,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2001
    Vibhas S. Mujumdar
    Abstract Previous studies have demonstrated a relationship between hyperhomocysteinemia and endothelial dysfunction, reduced bioavailability of nitric oxide, elastinolysis and, vascular muscle cell proliferation. In vivo decreased nitric oxide production is associated with increased matrix metalloproteinase (MMP) activity and formation of nitrotyrosine. To test the hypothesis that homocysteine neutralizes vascular endothelial nitric oxide, activates metalloproteinase, causes elastinolysis and vascular hypertrophy, we isolated aortas from normotensive Wistar rats and cultured them in medium containing homocysteine, and calf serum for 14 days. Homocysteine-mediated impairment of endothelial-dependent vasodilatation was reversed by co-incubation of homocysteine with nicotinamide (an inhibitor of peroxinitrite and nitrotyrosine), suggesting a role of homocysteine in redox-mediating endothelial dysfunction and nitrotyrosine formation. The Western blot analysis, using anti-nitrotyrosine antibody, on aortic tissue homogeneates demonstrated decreased nitrotyrosine in hyperhomocysteinemic vessels treated with nicotinamide. Zymographic analysis revealed increased elastinolytic gelatinase A and B (MMP-2, -9) in homocysteine treated vessels and the treatment with nicotinamide decreases the homocysteine-induced MMP activation. Morphometric analyses revealed significant medial hypertrophic thickening (1.4,±,0.2-fold of control, P,=,0.03) and elastin disruption in homocysteine-treated vessels as compared to control. To determine whether homocysteine causes endothelial cell injury, cross-sections of aortas were analyzed for caspase activity by incubating with Ac-YVAD-AMC (substrate for apoptotic enzyme, caspase). The endothelium of homocysteine treated vessels, and endothelial cells treated with homocysteine, showed marked labeling for caspase. The length-tension relationship of homocysteine treated aortas was shifted to the left as compared to untreated aortas, indicating reduced vascular elastic compliance in homocysteine-treated vessels. Co-incubation of homocysteine and inhibitors of MMP, tissue inhibitor of metalloproteinase-4 (TIMP-4), and caspase, YVAD-CHO, improved vascular function. The results suggest that alteration in vascular elastin/collagen ratio and activation of MMP-2 are associated with decreased NO production in hyperhomocysteinemia. J. Cell. Biochem. 82:491,500, 2001. © 2001 Wiley-Liss, Inc. [source]


    p38SJ, a novel DINGG protein protects neuronal cells from alcohol induced injury and death

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009
    Shohreh Amini
    Ethanol induces neuronal cell injury and death by dysregulating several signaling events that are controlled, in part, by activation of MAPK/ERK1/2 and/or inactivation of its corresponding phosphatase, PP1. Recently, we have purified a novel protein of 38,kDa in size, p38SJ, from a callus culture of Hypericum perforatum, which belongs to an emerging DINGG family of proteins with phosphate binding activity. Here, we show that treatment of neuronal cells with p38SJ protects cells against injury induced by exposure to ethanol. Furthermore, pre-treatment of neuronal cells with p38SJ diminishes the level of the pro-apoptotic protein Bax and some events associated with apoptosis such as caspase 3 cleavage. In addition, by inducing stress, alcohol can elevate production of reactive oxygen species (ROS) that leads to a decrease in the activity of superoxide dismutase (SOD). Our results showed that p38SJ restores the activity of SOD in the ethanol treated neuronal cells. These observations provide a novel biological tool for developing new approaches for preventing neuronal cell death induced by ethanol and possibly treatment of neurological disorders associated with alcohol abuse. J. Cell. Physiol. 221: 499,504, 2009. © 2009 Wiley-Liss, Inc. [source]


    Antioxidative and Anti-Inflammatory Protection of Oleanolic Acid and Ursolic Acid in PC12 Cells

    JOURNAL OF FOOD SCIENCE, Issue 7 2008
    Shih-Jei Tsai
    ABSTRACT:, PC12 cells were used to examine the in vitro antioxidative and anti-inflammatory effects of oleanolic acid (OA) and ursolic acid (UA). PC12 cells were pretreated with OA or UA at 20 and 40 ,M and followed by exposure of hydrogen peroxide (H2O2) or 1-methyl-4-phenylpyridinium ion (MPP+) to induce cell injury. Results showed that H2O2 - or MPP+ -treatment significantly decreased cell viability and increased lactate dehydrogenase (LDH) release (P < 0.05). The pretreatment from OA or UA significantly and concentration-dependently reduced subsequent H2O2 - or MPP+ -induced cell death and LDH release (P < 0.05). Either H2O2 - or MPP+ -treatment significantly increased malonyldialdehyde (MDA) formation, decreased glutathione (GSH) content, and diminished glutathione peroxidase (GPX), catalase, and superoxide dismutase (SOD) activities (P < 0.05). The pretreatment from OA or UA significantly retained GSH, and reversed H2O2 - and MPP+ -induced impairment in catalase and SOD activities (P < 0.05), and decreased MDA formation (P < 0.05). Either H2O2 - or MPP+ -treatment significantly elevated interleukin-6 (IL-6) and tumor necrosis factor (TNF)-, levels (P < 0.05). The pretreatments from OA or UA significantly attenuated subsequent H2O2 - or MPP+ -induced release of IL-6 and TNF-, (P < 0.05). Based on the observed antioxidative and anti-inflammatory activities from OA and UA, these 2 compounds were potent agents against neurodegenerative disorder. [source]


    Detection of Sublethal Thermal Injury in Salmonella enterica Serotype Typhimurium and Listeria monocytogenes Using Fourier Transform Infrared (FT-IR) Spectroscopy (4000 to 600 cm,1)

    JOURNAL OF FOOD SCIENCE, Issue 2 2008
    H.M. Al-Qadiri
    ABSTRACT:, Fourier transform infrared (FT-IR) spectroscopy (4000 to 600 cm,1) was utilized to detect sublethally heat-injured microorganisms: Salmonella enterica serotype Typhimurium ATCC 14028, a Gram-negative bacterium, and Listeria monocytogenes ATCC 19113, a Gram-positive bacterium. A range of heat treatments (N= 2) at 60 °C were evaluated: 0D (control), 2D, 4D, 6D, and 8D using a D60 °C (S. enterica serotype Typhimurium ATCC 14028 = 0.30 min, L. monocytogenes ATCC 19113 = 0.43 min). The mechanism of cell injury appeared to be different for Gram-negative and Gram-positive microbes as observed from differences in the 2nd derivative transformations and loadings plot of bacterial spectra following heat treatment. The loadings for PC1 and PC2 confirmed that the amide I and amide II bands were the major contribution to spectral variation, with relatively small contributions from C-H deformations, the antisymmetric P==O stretching modes of the phosphodiester nucleic acid backbone, and the C-O-C stretching modes of polysaccharides. Using soft independent modeling of class analogy (SIMCA), the extent of injury could be predicted correctly at least 83% of the time. Partial least squares (PLS) calibration analysis was constructed using 5 latent variables for predicting the bacterial counts for survivors of the different heat treatments and yielded a high correlation coefficient (R= 0.97 [S. enterica serotype Typhimurium] and 0.98 [L. monocytogenes]) and a standard error of prediction (SEP= 0.51 [S. enterica serotype Typhimurium] and 0.39 log10 CFU/mL [L. monocytogenes]), indicating that the degree of heat injury could be predicted. [source]


    Role of neutrophils in sinusoidal endothelial cell injury after extensive hepatectomy in cholestatic rats

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 8 2000
    Masayuki Ohtsuka
    Abstract Background and Aims: The authors have shown previously that sinusoidal endothelial cell injury developed concomitantly with the accumulation of neutrophils in the hepatic sinusoidal space in cholestatic rats after extensive hepatectomy. The aim of the present study was to investigate the role of neutrophils in the development of this kind of endothelial cell injury. Methods: Rats underwent 78% partial hepatectomy after 2 weeks of cholestasis, and subsequent external biliary drainage for 5 days. To decrease the number of neutrophils, antirat neutrophil serum was administered intraperitoneally. Some serum parameters and histological specimens were examined 48 h after partial hepatectomy. Results: Anti-neutrophil serum significantly reduced the number of accumulated neutrophils in the hepatic sinusoids. Although the purine nucleoside phosphorylase : alanine aminotransferase ratio, a marker of non-parenchymal cell injury, was increased in cholestatic-hepatectomized rats, this abnormality was significantly attenuated by the treatment with antineutrophil serum. Electron microscopically, focal detachment of cytoplasms of sinusoidal endothelial cells was observed occasionally in cholestatic-hepatectomized rats, but was not found in the antirat neutrophil serum-treated rats. Conclusion: These results indicate that accumulated neutrophils might be important effector cells in the pathogenesis of sinusoidal endothelial cell injury after extensive hepatectomy in cholestatic rats, even after appropriate external biliary drainage. [source]


    Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2010
    Chao Liu
    J. Neurochem. (2010) 112, 1500,1512. Abstract Recently more evidences support baicalein (Bai) is neuroprotective in models of ischemic stroke. This study was conducted to determine the molecular mechanisms involved in this effect. Either permanent or transient (2 h) middle cerebral artery occlusion (MCAO) was induced in rats in this study. Permanent MCAO led to larger infarct volumes in contrast to transient MCAO. Only in transient MCAO, Bai administration significantly reduced infarct size. Baicalein also markedly reduced apoptosis in the penumbra of transient MCAO rats. Additionally, oxygen and glucose deprivation (OGD) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular reactive oxygen species level and nitrotyrosine formation induced by OGD was counteracted by Bai, which is parallel with attenuated cell injury. The reduction of phosphorylation Akt and glycogen synthase kinase-3, (GSK3,) induced by OGD was restored by Bai, which was associated with preserved levels of phosphorylation of PTEN, the phophatase that negatively regulates Akt. As a consequence, Bcl-2/Bcl-xL-associated death protein phosphorylation was increased and the protein level of Bcl-2 in motochondria was maintained, which subsequently antagonize cytochrome c released in cytosol. LY294002 blocked the increase in phospho-AKT evoked by Bai and abolished the associated protective effect. Together, these findings provide evidence that Bai protects neurons against ischemia injury and this neuroprotective effect involves PI3K/Akt and PTEN pathway. [source]


    Endoplasmic reticulum dysfunction , a common denominator for cell injury in acute and degenerative diseases of the brain?

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2001
    Wulf Paschen
    Various physiological, biochemical and molecular biological disturbances have been put forward as mediators of neuronal cell injury in acute and chronic pathological states of the brain such as ischemia, epileptic seizures and Alzheimer's or Parkinson's disease. These include over-activation of glutamate receptors, a rise in cytoplasmic calcium activity and mitochondrial dysfunction. The possible involvement of the endoplasmic reticulum (ER) dysfunction in this process has been largely neglected until recently, although the ER plays a central role in important cell functions. Not only is the ER involved in the control of cellular calcium homeostasis, it is also the subcellular compartment in which the folding and processing of membrane and secretory proteins takes place. The fact that blocking of these processes is sufficient to cause cell damage indicates that they are crucial for normal cell functioning. This review presents evidence that ER function is disturbed in many acute and chronic diseases of the brain. The complex processes taken place in this subcellular compartment are however, affected in different ways in various disorders; whereas the ER-associated degradation of misfolded proteins is affected in Parkinson's disease, it is the unfolded protein response which is down-regulated in Alzheimer's disease and the ER calcium homeostasis that is disturbed in ischemia. Studying the consequences of the observed deteriorations of ER function and identifying the mechanisms causing ER dysfunction in these pathological states of the brain will help to elucidate whether neurodegeneration is indeed caused by these disturbances, and will help to fascilitate the search for drugs capable of blocking the pathological process directly at an early stage. [source]