Cell Hybrids (cell + hybrid)

Distribution by Scientific Domains


Selected Abstracts


Comparison of PERV genomic locations between Asian and European pigs

ANIMAL GENETICS, Issue 1 2010
W. Y. Jung
Summary Xenotransplantation from pigs provides a possible solution to the shortage of human organs for allotransplantation. Porcine endogenous retroviruses (PERVs) are a possible obstacle to using porcine organs in addition to the immunological barriers. Three main types of PERVs (A, B and C) have been previously investigated in diverse pig breeds. To examine the copy numbers of PERVs and their genomic locations in the Korean native pig genome, we screened a BAC (Bacterial Artificial Chromosome) library with PERV-specific protease primers for initial recognition of PERV-positive clones and three sets of envelope-specific primers for the identification of PERV types. A total of 45 PERV-positive clones, nine PERV-A and 36 PERV-B, have been identified from the library screening and the BAC contigs were constructed using the primers designed from BAC end sequences (BESs). These primers were also used for SCH (Somatic Cell Hybrid) and RH (Radiation Hybrid) mapping of the PERV-positive clones. The results indicate that 45 PERV-positive BAC clones belong to nine contigs and a singleton. SCH and IMpRH (INRA-Minnesota Porcine Radiation Hybrid) mapping results indicated that there are at least eight separate PERV genomic locations, consisting of three PERV-A and five PERV-B. One contig could not be mapped, and two contigs are closely located on SSC7. Southern blotting indicates there may be up to 15 additional sites. Further investigation of these clones will contribute to a general strategy to generate PERV-free lines of pigs suitable for xenotransplantation. [source]


State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 4 2007
Dietmar Werner Hutmacher
Abstract Scaffold-based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold,cell hybrid that may be called a tissue-engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore-wall microstructures. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Somatic cell hybrid and RH mapping of the porcine LGALS1, ITGA7, ITGB1, LGALS3, NOL12, GGA1, SH3BP1 and PDXP genes

ANIMAL GENETICS, Issue 3 2007
H. F. Qiu
No abstract is available for this article. [source]


Homozygous deletions within the 11q13 cervical cancer tumor-suppressor locus in radiation-induced, neoplastically transformed human hybrid cells

GENES, CHROMOSOMES AND CANCER, Issue 4 2004
Marc S. Mendonca
Studies on nontumorigenic and tumorigenic human cell hybrids derived from the fusion of HeLa (a cervical cancer cell line) with GM00077 (a normal skin fibroblast cell line) have demonstrated "functional" tumor-suppressor activity on chromosome 11. It has been shown that several of the neoplastically transformed radiation-induced hybrid cells called GIMs (gamma ray induced mutants), isolated from the nontumorigenic CGL1 cells, have lost one copy of the fibroblast chromosome 11. We hypothesized, therefore, that the remaining copy of the gene might be mutated in the cytogenetically intact copy of fibroblast chromosome 11. Because a cervical cancer tumor suppressor locus has been localized to chromosome band 11q13, we performed deletion-mapping analysis of eight different GIMs using a total of 32 different polymorphic and microsatellite markers on the long arm (q arm) of chromosome 11. Four irradiated, nontumorigenic hybrid cell lines, called CONs, were also analyzed. Allelic deletion was ascertained by the loss of a fibroblast allele in the hybrid cell lines. The analysis confirmed the loss of a fibroblast chromosome 11 in five of the GIMs. Further, homozygous deletion (complete loss) of chromosome band 11q13 band sequences, including that of D11S913, was observed in two of the GIMs. Detailed mapping with genomic sequences localized the homozygous deletion to a 5.7-kb interval between EST AW167735 and EST F05086. Southern blot hybridization using genomic DNA probes from the D11S913 locus confirmed the existence of homozygous deletion in the two GIM cell lines. Additionally, PCR analysis showed a reduction in signal intensity for a marker mapped 31 kb centromeric of D11S913 in four other GIMs. Finally, Northern blot hybridization with the genomic probes revealed the presence of a novel >15-kb transcript in six of the GIMs. These transcripts were not observed in the nontumorigenic hybrid cell lines. Because the chromosome 11q13 band deletions in the tumorigenic hybrid cell lines overlapped with the minimal deletion in cervical cancer, the data suggest that the same gene may be involved in the development of cervical cancer and in radiation-induced carcinogenesis. We propose that a gene localized in proximity to the homozygous deletion is the candidate tumor-suppressor gene. © 2004 Wiley-Liss, Inc. [source]


Stemness, fusion and renewal of hematopoietic and embryonic stem cells

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2003
S. Constantinescu
Abstract Development of replacement cell therapies awaits the identification of factors that regulate nuclear reprogramming and the mechanisms that control stem cell renewal and differentiation. Once such factors and signals will begin to be elucidated, new technologies will have to be envisaged where uniform differentiation of adult or embryonic stem cells along one differentiation pathway can be induced. Controlled differentiation of stem cells will require the engineering of niches and extracellular signal combinations that would amplify a particular signaling network and allow uniform and selective differentiation. Three recent advances in stem cell research open the possibility to approach engineering studies for cell replacement therapies. Fusion events between stem cells and adult cells or between adult and embryonic stem cells have been shown to result in altered fates and nuclear reprogramming of cell hybrids. Hematopoietic stem cells were shown to require Wnt signaling in order to renew. The purification of Wnt proteins would allow their use as exogenous purified cytokines in attempts to amplify stem cells before bone marrow transplantation. The homeodomain protein Nanog has been shown to be crucial for the embryonic stem cell renewal and pluripotency. However, the cardinal question of how stemness is preserved in the early embryo and adult stem cells remains opened. [source]


Generation of cell hybrids via a fusogenic cell line

THE JOURNAL OF GENE MEDICINE, Issue 7 2006
Siew Chiat Cheong
Abstract Background Hybrids obtained by fusion between tumour cells (TC) and dendritic cells (DC) have been proposed as anti-tumour vaccines because of their potential to combine the expression of tumour-associated antigens with efficient antigen presentation. The classical methods used for fusion, polyethylene glycol (PEG) and electrofusion, are cytotoxic and generate cell debris that can be taken up by DC rendering the identification of true hybrids difficult. Methods We have established a stable cell line expressing a viral fusogenic membrane glycoprotein (FMG) that is not itself susceptible to fusion. This cell line has been used to generate hybrids and to evaluate the relevance of tools used for hybrid detection. Results This FMG-expressing cell line promotes fusion between autologous or allogeneic TC and DC in any combination, generating ,tri-parental hybrids'. At least 20% of TC are found to be integrated into hybrids. Conclusions It is speculated that this tri-parental hybrid approach offers new possibilities to further modulate the anti-tumour effect of the DC/TC hybrids since it allows the expression of relevant immunostimulatory molecules by appropriate engineering of the fusogenic cell line. Copyright © 2006 John Wiley & Sons, Ltd. [source]