| |||
Cell Factor (cell + factor)
Kinds of Cell Factor Selected AbstractsAre guidelines on use of colony-stimulating factors in solid cancers flawed?INTERNAL MEDICINE JOURNAL, Issue 4 2009I. E. Haines Abstract In cancer care in Australia, we are very reliant on an array of expensive pharmaceuticals. Our use of these treatments is often based on multinational or foreign clinical studies. Oncologists are, to varying degrees, reliant on how the studies are interpreted by the writers of journal editorials, clinical guidelines and opinion pieces. Therefore it is important that these guidelines are balanced and evidence based. We have examined in detail one of the most influential and wide ranging clinical guidelines used in oncology, The American Society of Clinical Oncology (ASCO) 2006 Update of Recommendations for the use of White Blood Cell Factors: An Evidence-Based Clinical Practice Guideline. We have discussed in detail some of the controversial recommendations in this guideline and have exposed what we believe are some flaws in these recommendations. We would urge that we continue to be rigorous in our oversight of international research agendas and international clinical guidelines in the future. [source] Gene expression of colony-stimulating factors and stem cell factor after myocardial infarction in the mouseACTA PHYSIOLOGICA, Issue 3 2002P. R. WOLDBAEK ABSTRACT Recent studies have suggested that cytokines such as macrophage colony-stimulating factor (M-CSF) might be involved in the pathogenesis of ischaemic heart disease. Macrophage colony-stimulating factor, granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage-colony stimulating factor (GM-CSF), stem cell factor (SCF), interleukin-3 (IL-3) and interleukin-7 (IL-7) are potent cytokines belonging to the same structual class that may affect function, growth and apoptosis both in the heart and other organs. The aims of the present study were to characterize a post-infarction model in the mouse and to examine mRNA expression of M-CSF, GM-CSF, SCF, IL-3 and IL-7 during the development of heart failure. Myocardial infarction (MI) was induced in mice by ligation of the left coronary artery. Average infarct size was 40% and the mice developed myocardial hypertrophy and pulmonary oedema. Ribonuclease (RNAase) protection assays showed abundant cardiac expression of M-CSF and SCF. After MI, we measured down-regulation of cytokine mRNA expression in the heart (M-CSF, SCF), lung (M-CSF), liver (M-CSF) and spleen (M-CSF) compared with sham. Cardiac G-CSF, GM-CSF and IL-7 mRNAs were not detected. In conclusion, abundant cardiac gene expression of M-CSF and SCF was found. In our mouse model of MI, M-CSF and SCF were down-regulated in the heart and several other organs suggesting specific roles for these cytokines during development of ischaemic heart failure. [source] Effects of angiogenic regulators on in vitro proliferation and cytokine secretion by native human acute myelogenous leukemia blastsEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 1 2003Øystein Bruserud Abstract: Angiogenesis seems to be important in the pathogenesis of acute myelogenous leukemia (AML). The endothelial cell proliferation and microvessel formation are regulated by a wide range of soluble mediators, including angiogenin, angiopoietin-2, basic fibroblast growth factors, vascular endothelial growth factor (VEGF), VEGF-D, angiostatin and endostatin. In the present study, it has been investigated whether these mediators have an additional direct effect on the proliferation and cytokine release by native human AML blasts. AML cells derived from a large group of consecutive patients were investigated. All these mediators could alter the proliferation and cytokine release [interleukin (IL) 1,, IL6, IL8, tumor necrosis factor ,] for a minority of patients. Alteration of spontaneous proliferation by at least one mediator was detected in five of 38 patients; whereas, altered cytokine (Flt3-ligand, granulocyte-macrophage colony-stimulating factor, stem cell factor)-dependant proliferation was observed for 10 patients. Growth enhancement was most frequently observed, whereas growth inhibition was uncommon. The effects on AML blast proliferation were often dependant on or were modulated by the presence of the three hematopoietic growth factors. Based on the present results, it is concluded that angioregulatory mediators have additional growth-enhancing effects directly on the AML blasts for certain patients. However, based on the results from this investigation and previous studies it is suggested that their major contribution to the pathogenesis of AML is through their effects on regulation of bone marrow angiogenesis, and future studies of these mediators in AML should probably focus on these effects. [source] The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesisEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2008Frank Abstract The evolutionarily conserved canonical Wnt-,-catenin-T cell factor (TCF)/lymphocyte enhancer binding factor (LEF) signaling pathway regulates key checkpoints in the development of various tissues. Therefore, it is not surprising that a large body of gain-of-function and loss-of-function studies implicate Wnt-,-catenin signaling in lymphopoiesis and hematopoiesis. In contrast, recent papers have reported that Mx-Cre-mediated conditional deletion of ,-catenin and/or its homolog ,-catenin (plakoglobin) did not impair hematopoiesis or lymphopoiesis. However, these studies also report that TCF reporter activity remains active in ,-catenin- and ,-catenin-deficient hematopoietic stem cells and all cells derived from these precursors, indicating that the canonical Wnt signaling pathway was not abrogated. Therefore, these studies in fact show that the canonical Wnt signaling pathway is important in hematopoiesis and lymphopoiesis, even though the molecular basis for the induction of the reporter activity is currently unknown. In this perspective, we provide a broad background to the field with a discussion of the available data and create a framework within which the available and future studies may be evaluated. [source] Thymic epithelial cells provide Wnt signals to developing thymocytesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2003Judit Pongracz Abstract Interactions with thymic stromal cells are known to be critical for the development of T,cells from progenitors entering the thymus, yet the molecular mechanisms of stromal cell function remain poorly understood. Accumulating evidence has highlighted the importance of ,-catenin-mediated activation of T,cell factor (TCF)/lymphoid enhancer factor (LEF) transcription during thymocyte development. As regulation of this signaling pathway is controlled by binding of soluble Wnt proteins to cell surface Frizzled (Fz) receptors, we studied components of Wnt/Fz-mediated signaling in thecontext of stromal cell regulation of thymocyte development. We show that mRNA for a variety of Wnt family members, notably Wnt-4, Wnt-7a and 7b, and Wnt-10a and 10b, are expressed by thymic epithelium rather then by thymocytes, while thymocytes demonstrate a developmentally regulated pattern of Fz receptor expression. Collectively these findings suggest (1) a functional role for Wnt-producing thymic epithelium in determining TCF/LEF-mediated transcriptional regulation in Fz-bearing thymocytes, and (2) a role for defined Wnt-Fz interactions at successive stages of thymocyte maturation. In support of this we show that separation of thymocytes from Wnt-producing epithelial cells and the thymic microenvironment, triggers ,-catenin phosphorylation and degradation in thymocytes. Thus, sustained exposure to Wnt in the context of an intact stromal microenvironment is necessary for stabilization of ,-catenin-mediated signaling in thymocytes. [source] TNF-, induces the generation of Langerin/(CD207)+ immature Langerhans-type dendritic cells from both CD14,CD1a, and CD14+CD1a, precursors derived from CD34+ cord blood cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2003Jean-François Arrighi Abstract CD34+ cell-derived hematopoietic precursors amplified with FLT3-ligand, thrombopoietin and stem cell factor became, after a 6-day induction with GM-CSF, IL-4 and TGF-,1, HLA-DR+, CD1a+, CD83,, CD86,, CD80, cells. A fraction of them expressed Langerin, Lag, and E-cadherin, resembling epidermal Langerhans cells (LC). TNF-, addedfor the last 3,days only marginally induced CD83 expression, but strikingly increased the proportion of immature Langerin+CD83, LC. Langerin+CD83+ and Langerin+CD83, cells were functionally distinct, the former internalizing less efficiently Langerin than the latter. Both CD1a,CD14, and CD1a,CD14+ cells sorted from FLT3-ligand, thrombopoietin and stem cell factor cultures responded to TNF-, by an increase of Langerin+ cells. Thus, TNF-, rescued LC precursors irrespective of their commitment to the monocytic lineage. When added to GM-CSF, IL-4 and TGF,,1 containing-cultures, LPS or IL-1, also induced significant numbers of Langerin+CD83, immature cells displaying a low allostimulatory activity, while CD40-ligand largely promoted highly allostimulatory Langerin,CD83+ cells. Altogether, these data show that in contrast to CD40-ligand, which induced LC maturation even in presence of TGF-,1, nonspecific proinflammatory factors such as TNF-,, IL-1, or LPS, essentially induced immature LC generation, and little cell activation in the presence of TGF-,1. [source] Exploring the mast cell enigma: a personal reflection of what remains to be doneEXPERIMENTAL DERMATOLOGY, Issue 2 2008Beate M. Henz Abstract: Mast cells are traditionally viewed as effector cells of allergic reactions and parasitic diseases, but their importance in host defense against bacteria, in tissue remodelling, their bone marrow and stem cell origin and a central role of the stem cell factor (SCF) as mast cell growth and chemotactic factor has been worked out only in recent years. Despite this, major aspects about the nature of the cells and their role in disease remain unclear. This holds in particular for the identification of mast cell precursors and the role of growth factors that stimulate specific mast cell commitment from stem cells, such as nerve growth factor, neutrotrophin-3 and certain interleukins, alone and during interaction with SCF. Early data suggesting also an involvement of specific transcription factors need to be expanded in this process. Furthermore, although mast cell proliferative disease (mastocytosis) has been shown to be often associated with SCF receptor c-kit mutations, reasons for the development of this disease remain unclear. This holds also for mast cell release mechanisms in many types of mast cell-dependent urticaria. Exciting new insights are emerging regarding the role of mast cells in bacterial infections, in defense against tumors, in wound healing and in the interplay with the nervous system, with hormones, and in the neurohormonal network. The aim of this reflection is to delineate the many known and unknown aspects of mast cells, with a special focus on their development, and to discuss in detail two mast cell-related diseases, namely mastocytosis and urticaria. [source] Differential expression of mast cell characteristics in human myeloid cell linesEXPERIMENTAL DERMATOLOGY, Issue 9 2004Pia Welker Abstract:, In order to better understand the mechanisms governing display of mast cell characteristics in human myeloid cells, we have studied the mast cell phenotype in human promyelocytic (HL-60) and myelocytic (U-937, TPH-1) vs. basophilic (KU-812) and mast cell (HMC-1) lines, in part also in skin mast cells and blood monocytes, at mRNA and protein level before and after stimulation with mast cell growth factors. In unstimulated cells, mRNA for the stem cell factor (SCF) receptor c-kit and the gamma chain of the high-affinity IgE receptor (Fc,RI) was noted in all cells studied. Like mast and basophilic cells, THP-1 cells expressed the Fc,RI, and , chains and weakly histidine decarboxylase (HDC), but they lacked mRNA for mast cell-specific proteases [tryptase, chymase, carboxypeptidase A (CPA)]. In contrast, HL-60 and U-937 cells lacked Fc,RI,, but expressed tryptase and chymase, HL-60 cells also CPA. KU-812 cells failed to express the basophil-specific marker 2D7. After a 10-day culture with SCF or fibroblast supernatants, baseline mRNA expression of most mast cell characteristics was upregulated, whereas c-kit mRNA expression decreased in all but THP-1 cells. Differential mRNA expression of Fc,RI vs. protease (tryptase) was confirmed at protein level by immunocytochemistry and enzymatic activity. KU-812 cells are thus closest to skin mast cells in that they express all molecules studied, except for chymase, followed by THP-1 cells that lack all mast cell proteases. In contrast, HL-60 and U-937 cells fail to express the Fc,RI, and , chains but express most mast cell proteases. The selective and differential expression of mast cell characteristics in human myeloid cell lines suggests that induction of the mast cell phenotype is regulated by several independent genes and that mast cells and basophils branch off at early and distinct points of myeloid development. [source] Expression and mutational analysis of MET in human solid cancersGENES, CHROMOSOMES AND CANCER, Issue 12 2008Patrick C. Ma MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) regulate a variety of cellular functions, many of which can be dysregulated in human cancers. Activated MET signaling can lead to cell motility and scattering, angiogenesis, proliferation, branching morphogenesis, invasion, and eventual metastasis. We performed systematic analysis of the expression of the MET receptor and its ligand HGF in tumor tissue microarrays (TMA) from human solid cancers. Standard immunohistochemistry (IHC) and a computerized automated scoring system were used. DNA sequencing for MET mutations in both nonkinase and kinase domains was also performed. MET was differentially overexpressed in human solid cancers. The ligand HGF was widely expressed in both tumors, primarily intratumoral, and nonmalignant tissues. The MET/HGF likely is functional and may be activated in autocrine fashion in vivo. MET and stem cell factor (SCF) were found to be positively stained in the bronchioalevolar junctions of lung tumors. A number of novel mutations of MET were identified, particularly in the extracellular semaphorin domain and the juxtamembrane domain. MET-HGF pathway can be assayed in TMAs and is often overexpressed in a wide variety of human solid cancers. MET can be activated through overexpression, mutation, or autocrine signaling in malignant cells. Mutations in the nonkinase regions of MET might play an important role in tumorigenesis and tumor progression. MET would be an important therapeutic antitumor target to be inhibited, and in lung cancer, MET may represent a cancer early progenitor cell marker. © 2008 Wiley-Liss, Inc. [source] Further characterization of the first seminoma cell line TCam-2GENES, CHROMOSOMES AND CANCER, Issue 3 2008Jeroen de Jong Testicular germ cell tumors of adolescents and adults (TGCTs) can be classified into seminomatous and nonseminomatous tumors. Various nonseminomatous cell lines, predominantly embryonal carcinoma, have been established and proven to be valuable for pathobiological and clinical studies. So far, no cell lines have been derived from seminoma which constitutes more than 50% of invasive TGCTs. Such a cell line is essential for experimental investigation of biological characteristics of the cell of origin of TGCTs, i.e., carcinoma in situ of the testis, which shows characteristics of a seminoma cell. Before a cell line can be used as model, it must be verified regarding its origin and characteristics. Therefore, a multidisciplinary approach was undertaken on TCam-2 cells, supposedly the first seminoma cell line. Fluorescence in situ hybridization, array comparative genomic hybridization, and spectral karyotyping demonstrated an aneuploid DNA content, with gain of 12p, characteristic for TGCTs. Genome wide mRNA and microRNA expression profiling supported the seminoma origin, in line with the biallelic expression of imprinted genes IGF2/H19 and associated demethylation of the imprinting control region. Moreover, the presence of specific markers, demonstrated by immunohistochemistry, including (wild type) KIT, stem cell factor, placental alkaline phosphatase, OCT3/4 (also demonstrated by a specific Q-PCR) and NANOG, and the absence of CD30, SSX2-4, and SOX2, confirms that TCam-2 is a seminoma cell line. Although mutations in oncogenes and tumor suppressor genes are rather rare in TGCTs, TCam-2 had a mutated BRAF gene (V600E), which likely explains the fact that these cells could be propagated in vitro. In conclusion, TCam-2 is the first well-characterized seminoma-derived cell line, with an exceptional mutation, rarely found in TGCTs. © 2007 Wiley-Liss, Inc. [source] Ex vivo expansion of apheresis-derived peripheral blood hematopoietic progenitorsJOURNAL OF CLINICAL APHERESIS, Issue 1 2002Zeev Estrov Because the administration of hematopoietic growth factors and the use of stem cell support often fails to alleviate the neutropenic phase induced by cytotoxic drugs, several investigators have attempted to expand ex vivo hematopoietic progenitors for clinical use. These attempts have clearly shown that the cultured cells are functional and can be safely administered to patients, but that the in vivo performance is disappointing and the concept as a whole is not yet clinically useful. The major reasons for these unsuccessful attempts are thought to be cumbersome cell fractionation techniques, contamination, prolonged incubation, and the use of less than ideal cytokine combinations. In response, we have developed a simple procedure for ex vivo expansion of myeloid progenitor cells. In this assay, unfractionated mononuclear cells from apheresis donors are incubated in nonpyrogenic plastic bags for 7 days in the presence of culture medium either containing fetal calf serum or human plasma, granulocyte colony-stimulating factor, and stem cell factor. We have demonstrated that under these conditions the number of colony-forming units (CFU) granulocyte-macrophage (CFU-GM) and of CFU-granulocyte-macrophage-erythroid-megakaryocyte (CFU-GEMM) increased 7- and 9-fold, respectively, by day 7 and the number of burst-forming units-erythroid (BFU-E) increased 2.7-fold by day 5 of culture. Significant increases in the numbers of cells expressing CD34+, CD34+/CD38+, CD34+/CD33+, CD34+/CD15+, and CD34+/CD90+ and significant declines in the numbers of cells expressing CD34+/CD38- and CD19 surface antigens were also observed. The relative numbers of cells expressing T-cell markers and CD56 surface antigen did not change. By using different concentrations of various hematopoietic growth factor combinations, we can increase the number of mature and immature cells of different hematopoietic lineages. J. Clin. Apheresis 17:7,16, 2002. © 2002 Wiley-Liss, Inc. [source] Protein expression of melanocyte growth factors (bFGF, SCF) and their receptors (FGFR-1, c-kit) in nevi and melanomaJOURNAL OF CUTANEOUS PATHOLOGY, Issue 1 2007K. A. Giehl Background:, Basic fibroblast growth factor (bFGF) and stem cell factor (SCF) are essential growth factors for melanocytes which carry the receptors FGFR-1 for bFGF and c-kit for SCF. Because both factors may be involved in melanoma development, the expression of bFGF/FGFR-1 and SCF/c-kit was investigated in melanocytic tumors of different progression stages. Methods:, Fifty primary melanomas and 44 melanocytic nevi were analyzed for the expression of SCF, c-kit, bFGF, and FGFR-1 by immunohistochemistry. Results:, In melanoma, SCF and c-kit were expressed in 76 and 84%, respectively, and coexpressed in 66%. bFGF and FGFR-1 were expressed in 45 and 86%, respectively, and coexpressed in 46%. In melanocytic nevi, SCF was expressed in 23% and c-kit in 70% while coexpression was more common in dysplastic (39%) than non-dysplastic subtypes (8%). bFGF and FGFR-1 were expressed in 55 and 67%, respectively, while coexpression was found in 47% but varied considerably between different histological subtypes. Conclusions:, SCF and c-kit were frequently expressed by melanomas and dysplastic nevi suggesting an autocrine growth mechanism as described for bFGF. In both nevi and melanoma, c-kit was almost exclusively found in the epidermis while bFGF was more common in the dermis. Thus the growth factor/receptor expression seems to depend on the cutaneous localization of the melanocytic tumors. [source] Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NF,BJOURNAL OF NEUROCHEMISTRY, Issue 1 2005Krishnan M. Dhandapani Abstract Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NF,B, which was also important for neuroprotection. Akt inhibition prevented NF,B binding, suggesting a role for Akt in SCF-induced NF,B. Pharmacological inhibition of NF,B or dominant negative I,B also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NF,B-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NF,B-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease. [source] Tyrosine protein kinases and spermatogenesis: truncation mattersMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2006Abraham L. Kierszenbaum Abstract Protein phosphorylation on serine/threonine or tyrosine residues represents a significant regulatory mechanism in signal transduction during spermatogenesis, oogenesis, and fertilization. There are several families of tyrosine protein kinases operating during spermatogenesis: the Src family of tyrosine protein kinases; the Fujinami poultry sarcoma/feline sarcoma (Fps/Fes) and Fes-related protein (Fer) subfamily of non-receptor proteins; and c-kit, the transmembrane tyrosine kinase receptor that belongs to the family of the PDGF receptor. A remarkable characteristic is the coexistence of full-length and truncated tyrosine kinases in testis. Most of the truncated forms are present during spermiogenesis. Examples include the truncated forms of Src tyrosine kinase hematopoietic cell kinase (Hck), FerT, and tr-kit. A feature of FerT and tr-kit is the kinase domain that ensures the functional properties of the truncated protein. FerT, a regulator of actin assembly/disassembly mediated by cortactin phosphorylation, is present in the acroplaxome, a cytoskeletal plate containing an F-actin network and linking the acrosome to the spermatid nuclear envelope. This finding suggests that Fer kinase represents one of the tyrosine protein kinases that may contribute to spermatid head shaping. The c-kit ligand, stem cell factor (SCF), which induces c-kit dimerization and autophosphorylation, exists as both membrane-associated and soluble. Although tyrosine protein kinases are prominent in spermatogenesis, a remarkable observation is the paucity of phenotypic alterations in spermatogenic cells in male mice targeted with Fer kinase-inactivating mutation. It is possible that the redundant functions of the tyrosine protein kinase pool present during spermatogenesis may explain the limited phenotypes of single mutant mice. The production of compound and viable mutant mice, lacking the expression of two or more tyrosine kinases, may shed light on this intriguing issue. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] Enhanced expression of mast cell growth factor and mast cell activation in the bladder following the resolution of trinitrobenzenesulfonic acid (TNBS) colitis in female rats,NEUROUROLOGY AND URODYNAMICS, Issue 6 2007Ruomei Liang Abstract Aims Chronic pelvic pain disorders often overlap. We have shown that acute colonic irritation can produce acute irritative micturition patterns and acutely sensitize bladder afferent responses to mechanical and chemical stimuli. We hypothesize that with time, colonic irritation can lead to neurogenic changes in the bladder and the development of chronic bladder sensitization. Methods Micturition patterns were measured in rats 60,90 days after the induction of trinitrobenzenesulfonic acid (TNBS) colitis in the resolution phase of this model. Total and activated mast cells (MCs) were quantified in the bladder, while mRNA levels of stem cell factor (SCF; a.k.a. MC growth factor) and nerve growth factor (NGF; a MC and nociceptive C-fiber stimulator) were quantified in the bladder and L6-S1 dorsal root ganglia (DRG). Results Following intra-rectal TNBS, voiding volume was reduced (P,<,0.005), while voiding frequency was increased (P,<,0.05), both by ,50%. Furthermore, both the percentage and density of activated bladder MCs were significantly elevated (P,<,0.05), although total MC counts were not statistically increased. At the molecular level, urinary bladder SCF expression increased twofold (P,<,0.005), as did NGF (P,<,0.01), while L6-S1 DRG levels were not significantly elevated. Conclusions Chronic cystitis in the rat as evidenced by changes in micturition patterns and the recruitment of activated MCs can occur during the resolution phase of TNBS colitis. These changes, of which MCs may play an important role, appear to be maintained over time and may occur via stimulation of convergent pelvic afferent input resulting in the upregulation of neurotrophic factors in the target organ. Neurourol. Urodynam. 26:887,893, 2007. © 2007 Wiley-Liss, Inc. [source] Chemokine and cytokine expression in murine intestinal epithelium following Nippostrongylus brasiliensis infectionPARASITE IMMUNOLOGY, Issue 2 2002Anne Rosbottom Summary Infection of mice with the nematode parasite Nippostrongylus brasiliensis results in a well characterized intestinal mastocytosis with intraepithelial migration of mucosal mast cells (MMC). The molecules mediating this response are unknown. We examined expression of several putative mast cell chemoattractants in intestinal epithelium following N. brasiliensis infection. Expression of the chemokines monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1,(MIP-1,), RANTES (regulated on activation normal T-cell expressed and secreted), fractalkine, and thymocyte expressed chemokine (TECK); and the cytokines stem cell factor (SCF) and transforming growth factor ,1 (TGF,1), was constitutive and no alteration was detected following infection. MCP-1 expression was also constitutive but at much lower levels and increased expression was detected on days 7 and 14 postinfection. Expression of MCP-1 in whole jejunum was at much higher levels than in epithelium. Constitutive expression of MCP-1, MIP-1, and TGF,1 was also detected in cultured bone marrow-derived homologues of MMC. In an intestinal epithelial cell line (CMT-93), there was constitutive expression of SCF, TGF,1, fractalkine and MCP-1. The results show that, in vivo, epithelium is a potentially important source of mast cell chemoattractants. [source] PKC theta, a novel immunohistochemical marker for gastrointestinal stromal tumors (GIST), especially useful for identifying KIT-negative tumorsPATHOLOGY INTERNATIONAL, Issue 3 2005Atsushi Motegi Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the digestive tract and the majority of GIST has characteristic gain-of-function mutations of the c-kit gene, which encodes the KIT receptor for stem cell factor. The present study aimed to establish the usefulness of protein kinase C theta (PKC ,) as an immunohistochemical marker for GIST in comparison with KIT immunohistochemistry. PKC , immunohistochemistry was carried out not only on 48 cases of GIST and another 40 cases of gastrointestinal mesenchymal tumors, but also on 24 cases of various tumors known to be immunohistochemically positive for KIT. Immunohistochemically, 41 out of 48 cases (85%) of GIST were positive for PKC ,, and its expression was confirmed by Western blot analysis using six cases of surgically resected GIST. In the present study there were six GIST immunohistochemically negative for KIT, which histologically revealed a myxoid epithelioid appearance characteristic to that of GIST with platelet-derived growth factor receptor alpha mutation. All six GIST were immunohistochemically positive for PKC ,. No PKC , immunoreactivity was observed in other gastrointestinal mesenchymal tumors and various KIT-positive tumors except for three cases (14%) of gastrointestinal schwannomas. The present study revealed that PKC , is an immunohistochemically novel and useful marker for GIST, especially for GIST negative for KIT. [source] Establishment and characterization of a KIT-positive and stem cell factor-producing cell line, KTHOS, derived from human osteosarcomaPATHOLOGY INTERNATIONAL, Issue 2 2005Toshiaki Hitora Osteosarcoma is a malignant bone tumor that commonly affects adolescents and young adults. In the present study a human osteosarcoma cell line, KTHOS, was established from a primary osteosarcoma lesion in the distal femur of a 16-year-old girl. After 106 passages, the KTHOS cell line retained the biological characteristics of osteosarcoma. The KTHOS cells had spindle to pleomorphic cytoplasm with round to ovoid nuclei containing multiple prominent nucleoli, as expected based on the mesodermic origin of osteoblasts. The KTHOS cells were immunoreactive for osteocalcin, osteonectin, stem cell factor (SCF), and KIT (CD117). Reverse transcriptase,polymerase chain reaction indicated that the KTHOS cell line expressed mRNA for SCF and KIT. The KTHOS cells produced relatively high amounts of soluble SCF as determined by enzyme-linked immunosorbent assay. The results suggest that cell proliferation of the KTHOS cell line might be involved in autocrine and/or paracrine loops of the SCF/KIT signaling system. The KTHOS cell line is a novel human osteosarcoma cell line that releases SCF and expresses KIT. This cell line can be used for studies to explore the mechanisms for oncogenesis of human osteosarcomas. [source] Barrier requirements as the evolutionary "driver" of epidermal pigmentation in humansAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2010Peter M. Elias Current explanations for the development of epidermal pigmentation during human evolution are not tenable as stand-alone hypotheses. Accordingly, we assessed instead whether xeric- and UV-B-induced stress to the epidermal permeability barrier, critical to survival in a terrestrial environment, could have "driven" the development of epidermal pigmentation. (1) Megadroughts prevailed in central Africa when hominids expanded into open savannahs [,1.5,0.8 million years ago], resulting in sustained exposure to both extreme aridity and erythemogenic UV-B, correlating with genetic evidence that pigment developed ,1.2 million years ago. (2) Pigmented skin is endowed with enhanced permeability barrier function, stratum corneum integrity/cohesion, and a reduced susceptibility to infections. The enhanced function of pigmented skin can be attributed to the lower pH of the outer epidermis, likely due to the persistence of (more-acidic) melanosomes into the outer epidermis, as well as the conservation of genes associated with eumelanin synthesis and melanosome acidification (e.g., TYR, OCA2 [p protein], SLC24A5, SLC45A2, MATP) in pigmented populations. Five keratinocyte-derived signals (stem cell factor,KIT; FOXn1,FGF2; IL-1,, NGF, and p53) are potential candidates to have stimulated the sequential development of epidermal pigmentation in response to stress to the barrier. We summarize evidence here that epidermal interfollicular pigmentation in early hominids likely evolved in response to stress to the permeability barrier. Am. J. Hum. Biol., 2010. © 2010 Wiley-Liss, Inc. [source] Stem cell factor rescues tyrosinase expression and pigmentation in discreet anatomic locations in albino micePIGMENT CELL & MELANOMA RESEARCH, Issue 6 2009Jillian C Vanover Summary The K14-SCF transgenic murine model of variant pigmentation is based on epidermal expression of stem cell factor (SCF) on the C57BL/6J background. In this system, constitutive expression of SCF by epidermal keratinocytes results in retention of melanocytes in the interfollicular basal layer and pigmentation of the epidermis itself. Here, we extend this animal model by developing a compound mutant transgenic amelanotic animal defective at both the melanocortin 1 receptor (Mc1r) and tyrosinase (Tyr) loci. In the presence of K14-Scf, tyrosinase-mutant animals (previously thought incapable of synthesizing melanin) exhibited progressive robust epidermal pigmentation with age in the ears and tails. Furthermore, K14-SCF Tyrc2j/c2j animals demonstrated tyrosinase expression and enzymatic activity, suggesting that the c2j Tyr defect can be rescued in part by SCF in the ears and tail. Lastly, UV sensitivity of K14-Scf congenic animals depended mainly on the amount of eumelanin present in the skin. These findings suggest that c-kit signaling can overcome the c2j Tyr mutation in the ears and tails of aging animals and that UV resistance depends on accumulation of epidermal eumelanin. [source] Oncogenic and ligand-dependent activation of KIT/PDGFRA in surgical samples of imatinib-treated gastrointestinal stromal tumours (GISTs),THE JOURNAL OF PATHOLOGY, Issue 1 2009T Negri Abstract As the range of receptor tyrosine kinase (RTK) inhibitors widens, a detailed understanding of the activating mechanisms of KIT/platelet-derived growth factor receptor (PDGFR)A and the related downstream pathways involved in the development and maintenance of GISTs is becoming increasingly important. We analysed areas with different histological response ratios in surgical specimens taken from imatinib-treated and untreated GIST patients in order to investigate KIT and PDGFRA expression/activation, the presence of their cognate ligands and the activation of downstream signalling, by means of biochemistry, immunohistochemistry and flow cytometry. All of the cases showed KIT and PDGFRA co-expression. In addition to the oncogenic activation of mutated receptors, activation of wild-type KIT and wild-type PDGFRA, sustained by heterodimerization and an autocrine,paracrine loop, was demonstrated by the presence of their specific ligands, stem cell factor (SCF) and PDGFA. To confirm RTK activation further, all of the samples (including those with the highest regression ratios) were investigated for downstream effectors, and all proved to have activated downstream signalling. The results show that after the mutated receptors are switched off, heterologous wild-type receptors become important in imatinib-treated GISTs as a means of maintaining signalling activation. Taken together, our findings suggest that drugs targeting wild-type receptors should be tested in imatinib-treated GIST patients. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Prostatic stromal cells derived from benign prostatic hyperplasia specimens possess stem cell like propertyTHE PROSTATE, Issue 12 2007Victor K. Lin Abstract INTRODUCTION The hyper-proliferative activity of stromal smooth muscle (SM) cells is believed to be responsible for the pathogenesis of benign prostatic hyperplasia (BPH). We have observed that those stromal cells can differentiate into unrelated specialized cells. We thus hypothesize that stromal cells derived from adults prostate specimens may contain adult stem cells. To test this hypothesis, human prostate stromal primary cultures were established and used for characterization of their stem cell properties. METHODS Immunoblotting, immunohistochemistry, RT-PCR, and tissue culture techniques were used to characterize the primary cultured human prostate-derived stromal cells for their stem cell and differentiation properties. The plasticity of these stromal cells was analyzed using cell culture and histology techniques. RESULTS Primary cultured prostate stromal cells from BPH patient possess polygonal and elongated fibroblast/myofibroblast cellular morphology. They are positive in CD30, CD34, CD44, NSE, CD133, Flt-1, stem cell factor (SCF), and neuron-specific enolase (NSE), but negative in C-Kit, stem cell antigen (SCA), SH2, CD11b. Expression of SM myogenic markers in these cells may be induced by sodium butyrate (NaBu) treatment. Induction to osteogenic and adipogenic differentiation in these cells is also evident. CONCLUSIONS Our study on primary stromal cells from BPH patients have yielded many interesting findings that these prostate stroma cells possess: (1) mesenchymal stem cell (MSC) markers; (2) strong proliferative potential; and (3) ability to differentiate or transdifferentiate to myogenic, adipogenic, and osteogenic lineages. These cell preparations may serve as a potential tool for studies in prostate adult stem cell research and the regulation of benign prostatic hyperplasia. Prostate 67: 1265,1276, 2007. © 2007 Wiley-Liss, Inc. [source] SCF and c-kit expression profiles in male individuals with normal and impaired spermatogenesisANDROLOGIA, Issue 2 2010M. Bialas Summary The transcription levels of stem cell factor (SCF) and c-kit were examined using real-time RT PCR in interstitial and intratubular cell fractions, as well as in tissue homogenates from normal, azoospermic and neoplasmic patients. Peripheral blood mononuclear cells (PBMC) were used as a systemic control. The observed level of c-kit expression in all investigated groups was generally higher than the expression of SCF. The highest (statistically significant) level of c-kit was noted in testicular tumours (the greater part of which were represented by seminomas) in contrast to SCF mRNA, which may indicate an association between c-kit overexpression and seminoma development. In Sertoli cell only syndrome, almost equal levels of SCF and c-kit transcripts were noted. These results may indicate Leydig cells as the alternative source of c-kit gene transcription. SCF transcript values were low and comparable among the analysed subgroups except that in maturation arrest at spermatocyte stage, the SCF gene expression was statistically higher than in testicular tumours. It appears from the study that c-kit has been a dynamic gene, changing its activity in a variety of testicular pathologies while being expressed in all testicular compartments but clearly overexpressed in testicular tumours of seminomatous origin. [source] Molecular mechanisms utilized by alternative c-kit gene products in the control of spermatogonial proliferation and sperm-mediated egg activationANDROLOGIA, Issue 1 2003P. Rossi Summary. The c-kit proto-oncogene plays a dual role in the control of male fertility in mice through two alternative gene products: (1) c-kit [the transmembrane tyrosine kinase receptor for stem cell factor (SCF)], which is expressed and functional in differentiating spermatogonia of the postnatal testis, in which c-kit is essential for pre-meiotic proliferation; and (2) tr-kit, an intracellular protein which is specifically accumulated during spermiogenesis through the use of an alternative intronic promoter, and which is able to trigger mouse egg activation when microinjected into the cytoplasm of metaphase II arrested oocytes. Here, we summarize the most recent findings about the molecular pathways through which c-kit regulates cell cycle progression in mitotic germ cells, and those through which sperm-derived tr-kit triggers parthenogenetic completion of meiosis II and pronuclear formation in microinjected mouse eggs. [source] Expression and role of E-cadherin and CD103,7 (,E,7 integrin) on cultured mucosal-type mast cells,APMIS, Issue 2 2005TATSUYA TEGOSHI Mucosal-type mast cells (MMC) in the respiratory and/or gut epithelium play pivotal roles in the development of allergic inflammation and nematode clearance. To determine the role of E-cadherin and ,E,7 integrin in MMC localization to the epithelium, we analyzed the epithelial binding of two types of mouse bone marrow-derived mast cells: S3-BMMC, which developed in medium containing stem cell factor (SCF) plus IL-3, and S39T-BMMC, which developed with SCF, IL-3, IL-9 and TGF-,1. The latter cells were more similar to mature MMC than the former in terms of mouse mast cell protease (mMCP)-1 expression. FACS analyses revealed that S3-BMMC expressed E-cadherin and ,7 integrin but not ,E integrin, whereas S39T-BMMC expressed ,E,7 integrin as well as E-cadherin. Mn2+ promoted adhesion of S39T-BMMC to the monolayer of E-cadherin+F9 cells. The adhesion was suppressed significantly by the combined addition of blocking antibodies against integrin ,E and E-cadherin, whereas either blocking antibody alone failed to do so. S3-BMMC adhesion was suppressed by E-cadherin blocking antibody but not by ,E blocking antibody. These results suggested that E-cadherin and ,E,7 integrin, which are expressed on MMC-analog S39T-BMMC, play an important role in mast cell-epithelial cell interaction through homophilic as well as heterophilic binding to the epithelial E-cadherin molecule. [source] Serum Stem Cell Factor Level in Renal Transplant Recipients With Posttransplant ErythrocytosisARTIFICIAL ORGANS, Issue 12 2009Ahmet A. Kiykim Abstract The etiology of posttransplant erythrocytosis (PTE) remains unclear, and the most frequently suggested causative factors are still a matter of controversy. We aimed to investigate serum-soluble stem cell factor (sSCF) along with serum erythropoietin (EPO) levels in renal transplant recipients (RTRs) with PTE. Thirteen RTRs with PTE, 42 RTRs without PTE, and 42 healthy controls were included. Serum sSCF and EPO levels were determined using an enzyme-linked immunosorbent assay kit. Expected and observed/expected EPO levels were calculated. Serum sSCF levels and observed/expected EPO were significantly higher in RTRs with PTE than both RTRs without PTE and controls. In RTRs with PTE, sSCF level was significantly correlated with hematocrit and observed/expected EPO, respectively. Significant correlation was also observed between hematocrit level and observed/expected EPO in RTRs with PTE. Increased sSCF level and inadequate suppression of EPO production seem to have a role in the pathogenesis of PTE. [source] Solitary mastocytoma occurring at a site of traumaAUSTRALASIAN JOURNAL OF DERMATOLOGY, Issue 2 2009Alana Jane Tuxen ABSTRACT We describe a patient with a solitary mastocytoma arising at a site of trauma. The patient was born with the umbilical cord wrapped around her right thigh and subsequently developed a solitary mastocytoma in the exact site and distribution of this injury. The pathogenesis of mast cell proliferation in solitary mastocytoma is not completely understood. Cytokines released after injury, such as stem cell factor, may stimulate the proliferation of mast cells, as well as fibroblasts and melanocytes to form a mastocytoma. Mast cells in a newborn may be more sensitive to stem cell factor in the presence of cytokines released after injury due to an increased density of c-kit receptors. We present our patient and review the literature to support a hypothesis that this condition represents a reactive, and not neoplastic, process. [source] Duplexed On-Microbead Binding Assay for Competitive Inhibitor of Epidermal Growth Factor Receptor by Quantitative Flow CytometryBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2010Wen-Jun Lan Conventional methods for evaluation of EGFR inhibitors are limited. This study describes a duplexed on-microbead binding assay allowing competitive EGFR inhibitors to be quantificationally evaluated in vitro. Polystyrene microbeads barcoded by fluoresceine isothiocyanate fluorescence as high brightness and low brightness microspheres were coated with receptor tyrosine kinase (RTK) ligand-epidermal growth factor (EGF)/stem cell factor (SCF) and ATP/GTP, respectively. High and low brightness microbeads were mixed and incubated with EGFR and its competitive inhibitor in binding assay buffer. Phycoerythrin (PE) fluorescence-labelled antibody was employed to report the level of EGFR binding to EGF/SCF and ATP/GTP. Values were numbered via PE molecules assessed by quantitative flow cytometry. Results from this study demonstrated that incubation with EGFR identified by PE-labelled antibody can make EGF- and ATP-coated microbeads luminous. And EGF or ATP-competitive EGFR inhibitors, respectively, alleviated this in a concentration-dependent manner. Coating microbeads with SCF or GTP as a negative control cannot capture EGFR. The duplexed on-microbead binding assay in this study might be useful for discovering ligand- and ATP-competitive EGFR inhibitors in a rapid and quantificational approach. [source] Stem cell factor and H2O2 induce GLUT1 translocation in M07e cellsBIOFACTORS, Issue 2 2004Tullia Maraldi Abstract This work aims to elucidate the mechanisms involved in the early activation of glucose transport in hematopoietic M07e cells by stem cell factor (SCF) and a reactive oxygen species (ROS) as H2O2. SCF and H2O2 increase Vmax for glucose transport; this enhancement is due to a higher content in GLUT1 in plasma membranes, possibly through a translocation from intracellular stores. Inhibitors of tyrosine kinases or phospholipase C (PLC) remove glucose transport enhancement and prevent translocation. The inhibitory effect of STI-571 suggests a role for c-kit tyrosine kinase on glucose transport activation not only by SCF, but also by H2O2. On the other hand, neither protein kinase C nor phosphoinositide-3-kinase appear to be involved in the acute activation of glucose transport. Our data suggest that i) in M07e cells, SCF and exogenous H2O2 elicit a short-term activation of glucose transport through a translocation of GLUT1 from intracellular stores to plasma membranes; ii) both stimuli could share at least some signaling pathways leading to glucose uptake activation, involving protein tyrosine kinases and PLC iii) H2O2 could act increasing the level of tyrosine phosphorylation through the inhibition of tyrosine phosphatases and mimicking the regulation role of endogenous ROS. [source] Clinical scale ex vivo manufacture of neutrophils from hematopoietic progenitor cellsBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009Nicholas E. Timmins Abstract Dose-intensive chemotherapy results in an obligatory period of severe neutropenia during which patients are at high risk of infection. While patient support with donor neutrophils is possible, this option is restricted due to donor availability and logistic complications. To overcome these problems, we explored the possibility of large scale ex vivo manufacture of neutrophils from hematopoietic progenitor cells (HPC). CD34+ HPC isolated from umbilical cord blood (UCB) and mobilized peripheral blood (mPB) were expanded in serum-free medium supplemented with stem cell factor, granulocyte colony stimulating factor, and a thrombopoietin peptide mimetic. After 15 days of cultivation a 5,800-fold expansion in cell number was achieved for UCB, and up to 4,000-fold for mPB, comprising 40% and 60% mature neutrophils respectively. Ex vivo expanded neutrophils exhibited respiratory burst activity similar to that for donor neutrophils, and were capable of killing Candida albicans in vitro. These yields correspond to a more than 10-fold improvement over current methods, and are sufficient for the production of multiple neutrophil transfusion doses per HPC donation. To enable clinical scale manufacture, we adapted our protocol for use in a wave-type bioreactor at a volume of 10,L. This is the first demonstration of a large scale bioprocess suitable for routine manufacture of a mature blood cell product from HPC, and could enable prophylactic neutrophil support for chemotherapy patients. Biotechnol. Bioeng. 2009; 104: 832,840 © 2009 Wiley Periodicals, Inc. [source] |