Cell Derivation (cell + derivation)

Distribution by Scientific Domains


Selected Abstracts


JKT-1 is not a human seminoma cell line

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 4 2007
Jeroen de Jong
Summary The JKT-1 cell line has been used in multiple independent studies as a representative model of human testicular seminoma. However, no cell line for this specific tumour type has been independently confirmed previously; and therefore, the seminomatous origin of JKT-1 must be proven. The genetic constitution of the JKT-1 cells was determined using flow cytometry and spectral karyotyping, as well as array comparative genomic hybridization and fluorescent in situ hybridization. Marker profiling, predominantly based on differentially expressed proteins during normal germ cell development, was performed by immunohistochemistry and Western blot analyses. Moreover, genome wide affymetrix mRNA expression and profiling of 157 microRNAs was performed, and the status of genomic imprinting was determined. A germ cell origin of the JKT-1 cells was in line with genomic imprinting status and marker profile (including positive staining for several cancer-testis antigens). However, the supposed primary tumour, from which the cell line was derived, being indeed a classical seminoma, was molecularly proven not to be the origin of the cell line. The characteristic chromosomal anomalies of seminoma, e.g. gain of the short arm of chromosome 12, as well as the informative marker profile (positive staining for OCT3/4, NANOG, among others) were absent in the various JKT-1 cell lines investigated, irrespective of where the cells were cultured. All results indicate that the JKT-1 cell line is not representative of human seminoma. Although it can originate from an early germ cell, a non-germ cell derivation cannot be excluded. [source]


Surgeons and scientists: Working together in embryo research

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2009
Alison P. Murdoch
Abstract Most surgeons in academic hospitals will have had a request from an enthusiastic research scientist to take samples of tissue during an operation. It seems reasonable and most patients will respond positively. But of course it is not quite that simple. The regulation of donation of human tissue for basic research is clearly defined but usually less rigorous than that which covers translational research and clinical trials. An exception has been the donation of embryos for embryonic stem cell derivation. The specific issues related to obtaining cells from patients for this work has resulted in a different relationship between scientist and clinician. This will be considered. J. Cell. Biochem. 108: 1,2, 2009. © 2009 Wiley-Liss, Inc. [source]


Culturing in vitro produced blastocysts in sequential media promotes ES cell derivation

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 8 2006
J. Liu
Abstract Embryonic stem (ES) cell lines are routinely derived from in vivo produced blastocysts. We investigated the efficiency of ES cells derivation from in vitro produced blastocysts either in monoculture or sequential culture. Zygotes from hybrid F1 B6D2 mice were cultured in vitro to the blastocyst stage in Potassium (K+) simplex optimised medium (KSOM) throughout or in KSOM and switched to COOK blastocyst medium on day 3 (KSOM,CBM). Blastocysts were explanted on a feeder layer of mitomycin C-inactivated murine embryonic fibroblasts (MEF) in TX-WES medium for ES cell derivation. Sequential KSOM,CBM resulted in improved blastocyst formation compared to KSOM monoculture. ES cells were obtained from 32.1% of explanted blastocsyts cultured in KSOM,CBM versus18.4% in KSOM alone. ES cell lines were characterized by morphology, expression of SSEA-1, Oct-4 and alkaline phosphatase activity, and normal karyotype. These results indicate that in vitro culture systems to produce blastocysts can influence the efficiency of ES cell line derivation. Mol. Reprod. Dev. 1017,1021, 2006. © 2006 Wiley-Liss, Inc. [source]