| |||
Cell Cycle Entry (cell + cycle_entry)
Selected AbstractsAcute exposure of human lung cells to 1,3-butadiene diepoxide results in G1 and G2 cell cycle arrestENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2005Michael Schmiederer Abstract 1,3-butadiene (BD) causes genetic damage, including adduct formation, sister chomatid exchange, and point mutations. Previous studies have focused on the types of genetic damage and tumors found after long-term exposure of rodents to butadiene. This study examined the effect of the most active BD metabolite, butadiene diepoxide (BDO2), on cell cycle entry and progression in human lung fibroblasts (LU cells) with a normal diploid karyotype. Serum-arrested (G0) LU cells were exposed to BDO2 for 1 hr and stimulated to divide with medium containing 10% fetal bovine serum. The BDO2 -treated LU cells were evaluated for cell cycle progression, nuclear localization of arrest mediators, mitotic index, and cellular proliferation. The BDO2 -treated cells demonstrated a substantial inhibition of cell proliferation when treated with 100 ,M BDO2 for 1 hr. No appreciable levels of apoptosis or mitotic figures were observed in the BDO2 -treated cells through 96 hr posttreatment. Flow cytometric analysis revealed that the lack of proliferation in BDO2 -treated LU cells was related to G1 arrest in about half of the cells and a delayed progression through S and G2 arrest in nearly all of the remaining cells. Both G1 and G2 arrest were prolonged and only a very small percentage of BDO2 -treated cells were eventually able to replicate. Increased nuclear localization of both p53 and p21cip1 was observed in BDO2 -treated cells, suggesting that the cell cycle arrest was p21cip1 -mediated. These results demonstrate that BDO2 induces cell cycle perturbation and arrest even with short-term exposure that does not produce other pathologic cellular effects. Environ. Mol. Mutagen., 2005. © 2005 Wiley-Liss, Inc. [source] Low-dose TNF-, protects against hepatic ischemia-reperfusion injury in mice: Implications for preconditioningHEPATOLOGY, Issue 1 2003Narci Teoh Tumor necrosis factor , (TNF-,) is implicated in the pathogenesis of hepatic ischemia reperfusion injury but can also prime hepatocytes to enter the cell cycle. Ischemic preconditioning protects against ischemia-reperfusion (IR) liver injury and is associated with activation of nuclear factor ,B (NF-,B) and cell cycle entry. We examined the pattern of TNF-, release during hepatic IR in the presence or absence of ischemic preconditioning, and we tested whether a single low-dose injection of TNF could mimic the biologic effects of ischemic preconditioning. In naïve mice, hepatic and plasma levels of TNF-, rose during hepatic ischemia, reaching high levels after 90 minutes; values remained elevated during reperfusion until 44 hours. Following the ischemic preconditioning stimulus, there was an early rise in hepatic and serum TNF-, levels, but, during a second prolonged ischemic interval peak, TNF-, values were lower than in naïve mice and declined to negligible levels by 2 hours reperfusion. An injection with 1 ,g or 5 ,g/kg body weight TNF-, 30 minutes prior to hepatic IR substantially reduced liver injury determined by liver histology and serum alanine aminotransferase (ALT) levels. As in ischemic preconditioning, TNF-, pretreatment activated NF-,B DNA binding, STAT3, cyclin D1, cyclin-dependent kinase 4 (cdk4) expression, and cell cycle entry, determined by proliferating cell nuclear antigen (PCNA) staining of hepatocyte nuclei. In conclusion, the hepatoprotective effects of "preconditioning" can be simulated by TNF-, injection, which has identical downstream effects on cell cycle entry. We propose that transient increases in TNF-, levels may substitute for, as well as, mediate the hepatoprotective effects of ischemic preconditioning against hepatic IR injury. [source] Immunohistochemical estimation of cell cycle entry and phase distribution in astrocytomas: applications in diagnostic neuropathologyNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 5 2005Ian S. Scott An immunohistochemical method for assessing cell cycle phase distribution in neurosurgical biopsies would enable such data to be incorporated into diagnostic algorithms for the estimation of prognosis and response to adjuvant chemotherapy in glial neoplasms, without the requirement for flow cytometric analysis. Paraffin-embedded sections of intracerebral gliomas (n = 48), consisting of diffuse astrocytoma (n = 9), anaplastic astrocytoma (n = 8) and glioblastoma (n = 31), were analysed by immunohistochemistry using markers of cell cycle entry, Mcm-2 and Ki67, and putative markers of cell cycle phase, cyclins D1 (G1-phase), cyclin A (S-phase), cyclin B1 (G2-phase) and phosphohistone H3 (Mitosis). Double labelling confocal microscopy confirmed that the phase markers were infrequently coexpressed. Cell cycle estimations by immunohistochemistry were corroborated by flow cytometric analysis. There was a significant increase in Mcm-2 (P < 0.0001), Ki67 (P < 0.0001), cyclin A (P < 0.0001) and cyclin B1 (P = 0.002) expression with increasing grade from diffuse astrocytoma through anaplastic astrocytoma to glioblastoma, suggesting that any of these four markers has potential as a marker of tumour grade. In a subset of glioblastomas (n = 16) for which accurate clinical follow-up data were available, there was a suggestion that the cyclin A:Mcm-2 labelling fraction might predict a relatively favourable response to radical radiotherapy. These provisional findings, however, require confirmation by a larger study. We conclude that it is feasible to obtain detailed cell cycle data by immunohistochemical analysis of tissue biopsies. Such information may facilitate tumour grading and may enable information of prognostic value to be obtained in the routine diagnostic laboratory. [source] NDRG2 gene expression in B16F10 melanoma cells restrains melanogenesis via inhibition of Mitf expressionPIGMENT CELL & MELANOMA RESEARCH, Issue 6 2008Aeyung Kim Summary NDRG2 (N-myc downstream-regulated gene 2) is a candidate tumor suppressor implicated in control of glioblastoma proliferation and dendritic cell differentiation. The microphthalmia-associated transcription factor (Mitf) plays a crucial role in the melanocyte lineage and in melanoma by controlling survival, differentiation, cell cycle entry and exit, and melanoma metastasis. Identifying upstream regulators of Mitf expression, therefore, remains a key issue. In this study, we aimed to assess whether the candidate tumor suppressor NDRG2 can modulate Mitf expression. Here, we show that NDRG2 acts to prevent cAMP and ,-catenin-mediated activation of the Mitf promoter, thereby blocking melanogenesis via the downstream Mitf target genes Tyrosinase, Tyrp1 and Dct. The data suggest that NDRG2 impairs melanogenesis by interfering with both the TCF/,-catenin and cAMP/CREB pathways that are known to stimulate Mitf expression in melanocytes and have major implications for the role of NDRG2 in pigmentation and melanoma progression. Taken together, the results not only identify NDRG2 as a novel regulator of pigmentation, but also potentially a key factor in regulating melanoma progression via Mitf. [source] TNF Receptors Differentially Signal and Are Differentially Expressed and Regulated in the Human HeartAMERICAN JOURNAL OF TRANSPLANTATION, Issue 12 2009R. S. Al-Lamki Tumor necrosis factor (TNF) utilizes two receptors, TNFR1 and 2, to initiate target cell responses. We assessed expression of TNF, TNFRs and downstream kinases in cardiac allografts, and compared TNF responses in heart organ cultures from wild-type (WTC57BL/6), TNFR1-knockout (KO), TNFR2KO, TNFR1/2KO mice. In nonrejecting human heart TNFR1 was strongly expressed coincidentally with inactive apoptosis signal-regulating kinase-1 (ASK1) in cardiomyocytes (CM) and vascular endothelial cells (VEC). TNFR2 was expressed only in VEC. Low levels of TNF localized to microvessels. Rejecting cardiac allografts showed increased TNF in microvessels, diminished TNFR1, activation of ASK1, upregulated TNFR2 co-expressed with activated endothelial/epithelial tyrosine kinase (Etk), increased apoptosis and cell cycle entry in CM. Neither TNFR was expressed significantly by cardiac fibroblasts. In WTC57BL/6 myocardium, TNF activated both ASK1 and Etk, and increased both apoptosis and cell cycle entry. TNF-treated TNFR1KO myocardium showed little ASK1 activation and apoptosis but increased Etk activation and cell cycle entry, while TNFR2KO myocardium showed little Etk activation and cell cycle entry but increased ASK1 activation and apoptosis. These observations demonstrate independent regulation and differential functions of TNFRs in myocardium, consistent with TNFR1-mediated cell death and TNFR2-mediated repair. [source] Infection with Toxoplasma gondii results in dysregulation of the host cell cycleCELLULAR MICROBIOLOGY, Issue 5 2008Robert E. Molestina Summary Mammalian cells infected with Toxoplasma gondii are characterized by a profound reprogramming of gene expression. We examined whether such transcriptional responses were linked to changes in the cell cycle of the host. Human foreskin fibroblasts (HFFs) in the G0/G1 phase of the cell cycle were infected with T. gondii and FACS analysis of DNA content was performed. Cell cycle profiles revealed a promotion into the S phase followed by an arrest towards the G2/M boundary with infection. This response was markedly different from that of growth factor stimulation which caused cell cycle entry and completion. Transcriptional profiles of T. gondii -infected HFF showed sustained increases in transcripts associated with a G1/S transition and DNA synthesis coupled to an abrogation of cell cycle regulators critical in G2/M transition relative to growth factor stimulation. These divergent responses correlated with a distinct temporal modulation of the critical cell cycle regulator kinase ERK by infection. While the kinetics of ERK phosphorylation by EGF showed rapid and sustained activation, infected cells displayed an oscillatory pattern of activation. Our results suggest that T. gondii infection induces and maintains a ,proliferation response' in the infected cell which may fulfill critical growth requirements of the parasite during intracellular residence. [source] |