| |||
Causal Mutation (causal + mutation)
Selected AbstractsCase,control genetic association study of fibulin-6 (FBLN6 or HMCN1) variants in age-related macular degeneration (AMD),HUMAN MUTATION, Issue 4 2007Sheila A. Fisher Abstract This article reports a well-powered age-related macular degeneration (AMD) case,control association study in the HMCN1 gene, showing that common variants do not account for a substantial proportion of AMD cases. Thus, the consistent linkage peak observed by several genome-wide linkage scans within the 1q32 region is unlikely to be attributed to polymorphisms at the HMCN1 locus. In addition, the analysis provides comprehensive data suggesting that low-frequency variants encoding possible functional amino acid polymorphisms in the HMCN1 gene may not contribute substantially to disease, although HMCN1 mutations may still confer disease susceptibility in a small subset of patients. Interestingly, the HMCN1 p.Gln5346Arg mutation, which is thought to be a causal mutation in a large AMD pedigree segregating the disease as a single-gene trait, appears to occur in our control cohort as a low-frequency polymorphism with an allele frequency of approximately 0.0026. Hum Mutat 28(4), 406,413, 2007. © 2007 Wiley-Liss, Inc. [source] Polymorphism of the pig acetyl-coenzyme A carboxylase , gene is associated with fatty acid composition in a Duroc commercial lineANIMAL GENETICS, Issue 4 2009D. Gallardo Summary Acetyl-coenzyme A carboxylase , (ACACA) catalyses the first committed step in the biosynthesis of long-chain fatty acids (FA) by converting acetyl-CoA into malonyl-CoA. In pigs, the ACACA gene maps to a chromosome 12 QTL with important effects on FA composition. In the present study, we have sequenced the coding region of the pig ACACA gene in 15 pigs, identifying 21 polymorphic sites that were either synonymous or non-coding. Ten of these SNPs segregated in a Duroc commercial population (n = 350) for which lipid metabolism and meat and carcass quality trait records were available. Significant associations were found between two linked single nucleotide polymorphisms (c.4899G>A and c.5196T>C) and percentages of carcass lean, intramuscular fat, monounsaturated, saturated (myristic, palmitic and stearic) and polyunsaturated (linoleic) FAs in the longissimus thoracis et lumborum muscle, along with serum HDL-cholesterol concentration. The most important allele substitution effects were observed for the polyunsaturated/saturated FA ratio (13,21% of the phenotypic mean) as well as for the percentages of ,-6 and polyunsaturated FAs, especially linoleic acid (7,16% of the phenotypic mean). These results suggest the existence of a causal mutation, mapping to the chromosomal region containing the pig ACACA gene, with marked effects on FA composition of meat. [source] Association of single nucleotide polymorphisms in the endothelial differentiation sphingolipid G-protein-coupled receptor 1 gene with marbling in Japanese Black beef cattleANIMAL GENETICS, Issue 2 2009T. Yamada Summary Marbling defined by the amount and distribution of intramuscular fat, so-called Shimofuri, is an economically important trait of beef cattle in Japan. The endothelial differentiation sphingolipid G-protein-coupled receptor 1 (EDG1) gene, involved in blood vessel formation, has been previously shown to be expressed at different levels in musculus longissimus muscle between low-marbled and high-marbled steer groups. It is located within the genomic region of a quantitative trait locus for marbling, and thus was considered as a positionally functional candidate for the gene responsible for marbling. In this study, two single nucleotide polymorphisms (SNPs) in the 5, untranslated region (UTR) and the 3, UTR of EDG1, referred to as c. - 312A>G and c.*446G>A, respectively, were detected between the two steer groups. The two SNPs were associated with the predicted breeding value for beef marbling standard number by analyses using a population of Japanese Black beef cattle. The effect of genotypes at each of the SNPs on the predicted breeding value for subcutaneous fat thickness was not statistically significant (P > 0.05). Reporter gene assays revealed no significant differences in gene expression between alleles at each of the SNPs. These findings suggest that EDG1 SNPs, although they may not be regarded as a causal mutation, may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle. [source] Novel SNP in 5, flanking region of EDG1 associated with marbling in Japanese Black beef cattleANIMAL SCIENCE JOURNAL, Issue 4 2009Takahisa YAMADA ABSTRACT Marbling, defined by the amount and distribution of intramuscular fat, is an economically important trait of beef cattle in Japan. The endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 (EDG1) gene has been considered as a positional functional candidate for the gene responsible for marbling. We have recently reported that 2 single nucleotide polymorphisms (SNPs), c.-312A>G in the 5, untranslated region (UTR) and c.*446G>A in the 3, UTR in EDG1 were associated with marbling in Japanese Black beef cattle, but this was not functional and a causal mutation for marbling. In the present study, we detected 2 novel SNPs, referred to as g.1475435G>A and g.1471620G>T, in the 5, flanking region of the EDG1 between low-marbled and high-marbled steer groups, which were previously shown to have EDG1 expression differences in musculus longissimus muscle. The g.1475435G>A SNP seemed not to segregate in Japanese Black beef cattle. The g.1471620G>T SNP was associated with the predicted breeding value for beef marbling standard number by the analyses using Japanese Black beef cattle population. Based on these findings, we hypothesized that the g.1471620G>T SNP might have an impact on EDG1 expression and also marbling. [source] A Validation Study of Type 2 Diabetes-related Variants of the TCF7L2, HHEX, KCNJ11, and ADIPOQ Genes in one Endogamous Ethnic Group of North IndiaANNALS OF HUMAN GENETICS, Issue 4 2010Vipin Gupta Summary The aim of this study was to validate the single nucleotide polymorphisms (SNPs) of four candidate genes (TCF7L2, HHEX, KCNJ11, and ADIPOQ) related to type 2 diabetes (T2D) in an endogamous population of north India; the Aggarwal population, having 18-clans. This endogamous population model was heavily supported by recent land mark work and we also verified the homogeneity of this population by clan-based stratification analysis. Two SNPs (rs4506565; rs7903146) in TCF7L2 were found to be significant (p-value = 0.00191; p-value = 0.00179, respectively), and odds ratios of 2.1 (dominant-model) and 2.0 (recessive-model) respectively, were obtained for this population. The TTT haplotype in the TCF7L2 gene was significantly associated with T2D. Waist-Hip ratio (WHR), systolic blood pressure (SBP), and age were significant covariates for increasing risk of T2D. Single-SNP, combined-SNPs and haplotype analysis provides clear evidence that the causal mutation is near to or within the significant haplotype (TTT) of the TCF7L2 gene. In spite of a culturally-learned sedentary lifestyle and fat-enriched dietary habits, WHR rather than body-mass-index emerged as a robust predictor of risk for T2D in this population. [source] A genome wide association study for QTL affecting direct and maternal effects of stillbirth and dystocia in cattleANIMAL GENETICS, Issue 3 2010H. G. Olsen Summary Dystocia and stillbirth are significant causes of female and neonatal death in many species and there is evidence for a genetic component to both traits. Identifying causal mutations affecting these traits through genome wide association studies could reveal the genetic pathways involved and will be a step towards targeted interventions. Norwegian Red cattle are an ideal model breed for such studies as very large numbers of records are available. We conducted a genome wide association study for direct and maternal effects of dystocia and stillbirth using almost 1 million records of these traits. Genotyping costs were minimized by genotyping the sires of the recorded cows, and using daughter averages as phenotypes. A dense marker map containing 17 343 single nucleotide polymorphisms covering all autosomal chromosomes was utilized. The genotyped sires were assigned to one of two groups in an attempt to ensure independence between the groups. Associations were only considered validated if they occurred in both groups. Strong associations were found and validated on chromosomes 4, 5, 6, 9, 12, 20, 22 and 28. The QTL region on chromosome 6 was refined using LDLA analysis. The results showed that this chromosome most probably contains two QTL for direct effect on dystocia and one for direct effect on stillbirth. Several candidate genes may be identified close to these QTL. Of these, a cluster of genes expected to affect bone and cartilage formation (i.e. SPP1, IBSP and MEPE) are of particular interest and we suggest that these genes are screened in candidate gene studies for dystocia and stillbirth in cattle as well as other species. [source] QTL mapping for two commercial traits in farmed saltwater crocodiles (Crocodylus porosus)ANIMAL GENETICS, Issue 2 2010L. G. Miles Summary The recent generation of a genetic linkage map for the saltwater crocodile (Crocodylus porosus) has now made it possible to carry out the systematic searches necessary for the identification of quantitative trait loci (QTL) affecting traits of economic, as well as evolutionary, importance in crocodilians. In this study, we conducted genome-wide scans for two commercially important traits, inventory head length (which is highly correlated with growth rate) and number of scale rows (SR, a skin quality trait), for the existence of QTL in a commercial population of saltwater crocodiles at Darwin Crocodile Farm, Northern Territory, Australia. To account for the uncommonly large difference in sex-specific recombination rates apparent in the saltwater crocodile, a duel mapping strategy was employed. This strategy employed a sib-pair analysis to take advantage of our full-sib pedigree structure, together with a half-sib analysis to account for, and take advantage of, the large difference in sex-specific recombination frequencies. Using these approaches, two putative QTL regions were identified for SR on linkage group 1 (LG1) at 36 cM, and on LG12 at 0 cM. The QTL identified in this investigation represent the first for a crocodilian and indeed for any non-avian member of the Class Reptilia. Mapping of QTL is an important first step towards the identification of genes and causal mutations for commercially important traits and the development of selection tools for implementation in crocodile breeding programmes for the industry. [source] A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approachANIMAL GENETICS, Issue 2 2009G. Le Mignon Summary Quantitative trait loci (QTL) influencing the weight of abdominal fat (AF) and of breast muscle (BM) were detected on chicken chromosome 5 (GGA5) using two successive F2 crosses between two divergently selected ,Fat' and ,Lean' INRA broiler lines. Based on these results, the aim of the present study was to identify the number, location and effects of these putative QTL by performing multitrait and multi-QTL analyses of the whole available data set. Data concerned 1186 F2 offspring produced by 10 F1 sires and 85 F1 dams. AF and BM traits were measured on F2 animals at slaughter, at 8 (first cross) or 9 (second cross) weeks of age. The F0, F1 and F2 birds were genotyped for 11 microsatellite markers evenly spaced along GGA5. Before QTL detection, phenotypes were adjusted for the fixed effects of sex, F2 design, hatching group within the design, and for body weight as a covariable. Univariate analyses confirmed the QTL segregation for AF and BM on GGA5 in male offspring, but not in female offspring. Analyses of male offspring data using multitrait and linked-QTL models led us to conclude the presence of two QTL on the distal part of GGA5, each controlling one trait. Linked QTL models were applied after correction of phenotypic values for the effects of these distal QTL. Several QTL for AF and BM were then discovered in the central region of GGA5, splitting one large QTL region for AF into several distinct QTL. Neither the ,Fat' nor the ,Lean' line appeared to be fixed for any QTL genotype. These results have important implications for prospective fine mapping studies and for the identification of underlying genes and causal mutations. [source] |