Caudal Portion (caudal + portion)

Distribution by Scientific Domains


Selected Abstracts


Overlapping representations of the neck and whiskers in the rat motor cortex revealed by mapping at different anaesthetic depths

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008
Shashank Tandon
Abstract The primary motor cortex of mammals has an orderly representation of different body parts. Within the representation of each body part the organization is more complex, with groups of neurons representing movements of a muscle or a group of muscles. In rats, uncertainties continue to exist regarding organization of the primary motor cortex in the whisker and the neck region. Using intracortical microstimulation (ICMS) we show that movements evoked in the whisker and the neck region of the rat motor cortex are highly sensitive to the depth of anaesthesia. At light anaesthetic depth, whisker movements are readily evoked from a large medial region of the motor cortex. Lateral to this is a small region where movements of the neck are evoked. However, in animals under deep anaesthesia whisker movements cannot be evoked. Instead, neck movements are evoked from this region. The neck movement region thus becomes greatly expanded. An analysis of the threshold currents required to evoke movements at different anaesthetic depths reveals that the caudal portion of the whisker region has dual representation, of both the whisker and the neck movements. The results also underline the importance of carefully controlling the depth of anaesthesia during ICMS experiments. [source]


Cardiovascular effects of noradrenaline microinjected into the dorsal periaqueductal gray area of unanaesthetized rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005
Gislaine Garcia Pelosi
Abstract The periaqueductal grey area (PAG) is a mesencephalic region that is involved in the modulation of cardiovascular changes associated with behavioural responses. Among the neurotransmitters present in the PAG, noradrenaline (NA) is also known to be involved in central nervous system cardiovascular regulation. In the present study we report the cardiovascular effects of the microinjection of NA into the dorsal portion of the PAG (dPAG) of unanaesthetized rats and the peripheral mechanism involved in their mediation. Injection of NA in the dPAG of unanaesthetized rats evoked a dose-dependent pressor response accompanied by bradycardia. The magnitude of the pressor responses was higher at more rostral sites in the dPAG and decreased when NA was injected into the caudal portion of the dPAG. The responses to NA were markedly reduced in urethane-anaesthetized rats. The pressor response was potentiated by i.v. pretreatment with the ganglion blocker pentolinium and blocked by i.v. pretreatment with the vasopressin antagonist dTyr(CH2)5(Me)AVP. The results suggest that activation of noradrenergic receptors within the dPAG can evoke pressor responses, which are mediated by acute vasopressin release. [source]


Gross and Microscopic Anatomy of the Pineal Gland in Nasua nasua, Coati (Linnaeus, 1766)

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2008
P. O. Favaron
Summary Nasua nasua, coati, is a mammal of the Carnivora order and Procyonidae family. It lives in bands composed of females and young males. The pineal gland or epiphysis of brain is endocrine, producing the melatonin. Its function is the control of the cycle of light environment, characteristic of day and night. For this research, five adult coatis were used, originating from CECRIMPAS-UNIfeob (Proc. IBAMA 02027.003731/04-76), Brazil. The animals were killed and perfusion-fixed in 10% formaldehyde. Pineals were measured and a medium size was found to be 2.3-mm-long and 1.3-mm-wide. Pineal gland was located in the habenular commissure in the most caudal portion of the third ventricular roof, lying in a dorso-caudal position from the base to the apex. Pinealocytes were predominantly found in the glandular parenchyma. Distinct and heterogeneous arrangements of these cells throughout the three pineal portions were observed as follows: linear cords at the apex, circular cords at the base of the gland, whereas at the body a transition arrangement was found. Calcareous concretions could be observed in the apex. The pineal gland was classified as subcallosal type [Rec. Méd. Vét.1, 36 (1956)] and as AB type [Prog. Brain Res. 42, 25 (1979); The Pineal Organ, Berlin/Heidelberg: Springer-Verlag (1981)]. [source]


Somatic and visceral afferents to the ,vasodepressor region' of the caudal midline medulla in the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2003
Jason R. Potas
Abstract Previous research has found that the integrity of a restricted region of the caudal midline medulla (including caudal portions of nucleus raphé obscurus and nucleus raphé pallidus) was critical for vasodepression (hypotension, bradycardia, decreased cardiac contractility) evoked either by haemorrhage or deep pain. In this anatomical tracing study we found that the vasodepressor part of the caudal midline medulla (CMM) receives inputs arising from spinal cord, spinal trigeminal nucleus (SpV) and nucleus of the solitary tract (NTS). Specifically: (i) a spinal,CMM projection arises from neurons of the deep dorsal horn, medial ventral horn and lamina X at all spinal segmental levels, with approximately 60% of the projection originating from the upper cervical spinal cord (C1,C4); (ii) a SpV,CMM projection arises primarily from neurons at the transition between subnucleus caudalis and subnucleus interpolaris; (iii) a NTS,CMM projection arises primarily from neurons in ventrolateral and medial subnuclei. In combination, the specific spinal, SpV and NTS regions which project to the CMM receive the complete range of somatic and visceral afferents known to trigger vasodepression. The role(s) of each specific projection is discussed. [source]


Mutational screening of the CYP26A1 gene in patients with caudal regression syndrome,

BIRTH DEFECTS RESEARCH, Issue 2 2006
Patrizia De Marco
Abstract BACKGROUND The retinoic acid (RA),catabolizing enzyme Cyp26a1 plays an important role in protecting tailbud tissues from inappropriate exposure to RA. Cyp26a1 -null animals exhibit caudal agenesis and spina bifida, imperforate anus, agenesis of the caudal portions of the digestive and urogenital tracts, and malformed lumbosacral skeletal elements. This phenotype closely resembles the most severe form of caudal agenesis in humans. In view of these findings, we investigated a potential involvement of the human CYP26A1 gene in the pathogenesis of caudal regression syndrome (CRS). METHODS Mutational screening of 49 CRS patients and 132 controls was performed using denaturing high-performance liquid chromatography and sequencing. Differences in the genotype and allele frequency of each SNP were evaluated by ,2 analysis. The biological significance of the intronic variants was investigated by transfection assays of mutant constructs and by analysis of the splicing patterns with RT-PCR. RESULTS Mutational screening allowed us to identify 6 SNPs, 4 of which (447C>G, 1134G>A, IVS1+10G>C, and IVS4+8AG>GA) are new. In addition, we describe a novel 2-site haplotype consisting of the 2 intronic SNPs. Both single-locus and haplotype analyses revealed no association with increased risk for CRS. The consequences of the 2 intronic polymorphisms on the mRNA splicing process were also investigated. Moreover, using functional and computational methods we demonstrated that both of these intronic polymorphisms affect the intron splicing efficiency. CONCLUSIONS Our research did not provide evidence that CYP26A1 has implications for the pathogenesis of human CRS. However, the relationship between CRS risk and the CYP26A1 genotype requires further study with a larger number of genotyped subjects. Birth Defects Research (Part A), 2006. © 2006 Wiley-Liss, Inc. [source]