| |||
Caudal Lobe (caudal + lobe)
Selected AbstractsDevelopment of an Improved Technique for the Perfusion of the Isolated Caudal Lobe of Sheep LiverEXPERIMENTAL PHYSIOLOGY, Issue 5 2000A. M. Ali The study was designed to develop an improved technique for perfusing the isolated caudal lobe of sheep liver. Twenty caudal lobes were perfused for 3-4 h, in a non-recirculating mode, with Krebs-Henseleit bicarbonate buffer. The perfusion system was designed to give a constant flow. The hepatic viability and functional normality of the perfused lobe were assessed by measuring the perfusion flow rate, pH, K+ efflux, O2 uptake, substrate uptake, gluconeogenesis from propionate and amino acids, and ureagenesis from ammonia and amino acids. Liver tissue was sampled for histological examination, as well as for the determination of liver glycogen and wet: dry weight ratio. The perfusion flow rate and pH were both stable throughout the perfusion. The potassium concentration in the effluent perfusate did not increase during the perfusion, suggesting that there was no loss of viability or hypoxia. The perfused lobe extracted more than 50% of the O2 supply. The rate of oxygen consumption was comparable to the rate reported in vivo. The initial glycogen content was reduced by about 40% after 4 h perfusion. The wet: dry weight ratio was 3.6, consistent with the absence of tissue oedema. Urea production was stimulated when NH4Cl (0.3 mM) was added to the medium but there was no significant increase in urea release when alanine (0.15 mM), glutamine (0.2 mM) or lysine (0.2 mM) was added. Urea production, however, increased by about 171% when a physiological mixture of amino acids was added. Propionate (0.5 mM), alanine and glutamine stimulated glucose production but not lysine or the complete amino acid mixture. Glutamine release was lower than that reported in the rat liver. Changing the direction of flow also revealed an apparent difference between livers from sheep and rats in their metabolism of ammonia. The improved technique offers a simple practical and inexpensive approach to many problems in ruminant physiology and nutritional biochemistry. [source] Differing strategies for forming the arthropod body plan: Lessons from Dpp, Sog and Delta in the fly Drosophila and spider AchaearaneaDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2008Hiroki Oda In the insect Drosophila embryo, establishment of maternal transcription factor gradients, rather than cell,cell interactions, is fundamental to patterning the embryonic axes. In contrast, in the chelicerate spider embryo, cell,cell interactions are thought to play a crucial role in the development of the embryonic axes. A grafting experiment by Holm using spider eggs resulted in duplication of the embryonic axes, similar to the Spemann's organizer experiment using amphibian eggs. Recent work using the house spider Achaearanea tepidariorum has demonstrated that the homologs of decapentaplegic (dpp), short gastrulation (sog) and Delta, which encode a bone morphogenetic protein (BMP)-type ligand, its antagonist and a Notch ligand, respectively, are required in distinct aspects of axis formation. Achaearanea Dpp appears to function as a symmetry-breaking signal, which could account for Holm's results to some extent. Experimental findings concerning Achaearanea sog and Delta have highlighted differences in the mechanisms underlying ventral and posterior development between Drosophila and Achaearanea. Achaearanea ventral patterning essentially depends on sog function, in contrast to the Drosophila patterning mechanism, which is based on the nuclear gradient of Dorsal. Achaearanea posterior (or opisthosomal) patterning relies on the function of the caudal lobe, which develops from cells surrounding the blastopore through progressive activation of Delta-Notch signaling. In this review, we describe the differing strategies for forming the arthropod body plan in the fly and spider, and provide a perspective towards understanding the relationship between the arthropod and vertebrate body plans. [source] Development of an Improved Technique for the Perfusion of the Isolated Caudal Lobe of Sheep LiverEXPERIMENTAL PHYSIOLOGY, Issue 5 2000A. M. Ali The study was designed to develop an improved technique for perfusing the isolated caudal lobe of sheep liver. Twenty caudal lobes were perfused for 3-4 h, in a non-recirculating mode, with Krebs-Henseleit bicarbonate buffer. The perfusion system was designed to give a constant flow. The hepatic viability and functional normality of the perfused lobe were assessed by measuring the perfusion flow rate, pH, K+ efflux, O2 uptake, substrate uptake, gluconeogenesis from propionate and amino acids, and ureagenesis from ammonia and amino acids. Liver tissue was sampled for histological examination, as well as for the determination of liver glycogen and wet: dry weight ratio. The perfusion flow rate and pH were both stable throughout the perfusion. The potassium concentration in the effluent perfusate did not increase during the perfusion, suggesting that there was no loss of viability or hypoxia. The perfused lobe extracted more than 50% of the O2 supply. The rate of oxygen consumption was comparable to the rate reported in vivo. The initial glycogen content was reduced by about 40% after 4 h perfusion. The wet: dry weight ratio was 3.6, consistent with the absence of tissue oedema. Urea production was stimulated when NH4Cl (0.3 mM) was added to the medium but there was no significant increase in urea release when alanine (0.15 mM), glutamine (0.2 mM) or lysine (0.2 mM) was added. Urea production, however, increased by about 171% when a physiological mixture of amino acids was added. Propionate (0.5 mM), alanine and glutamine stimulated glucose production but not lysine or the complete amino acid mixture. Glutamine release was lower than that reported in the rat liver. Changing the direction of flow also revealed an apparent difference between livers from sheep and rats in their metabolism of ammonia. The improved technique offers a simple practical and inexpensive approach to many problems in ruminant physiology and nutritional biochemistry. [source] Macroscopic Anatomy of the Ringed Seal [Pusa (Phoca) hispida] Lower Respiratory SystemANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 3 2009H. Smodlaka Summary This investigation serves to document the normal anatomical features of the lower respiratory tract of the ringed seal [Pusa (phoca) hispida]. Evaluation of embalmed specimens and tracheobronchial casts showed that the right lung of this seal consists of four lobes while the left has only three lobes. The ventral margins of the lungs do not reach the sternum causing them to form the boundary of the broad recessus costomediastinalis. Lung lobation corresponds with bronchial tree division. Pulmonary venous drainage includes right and left common veins draining ipsilateral cranial and middle lung lobes, and one common caudal vein draining both caudal lobes and the accessory lobe. The right and left pulmonary arteries divide into cranial and caudal branches at the level of the principal bronchus. The ringed seal has three tracheobronchial lymph nodes. The trachea has an average of 87 cartilages that exhibit a pattern of random anastomoses between adjacent rings. The trachea exhibits to a small degree the dorsoventrally flattened pattern that is described in other pinnipeds. The tracheal diameter is smaller than that of the canine. [source] |