| |||
Caudal Direction (caudal + direction)
Selected AbstractsOrigin and development of the pronephros in the chick embryoJOURNAL OF ANATOMY, Issue 6 2003Tamiko Hiruma Abstract The process by which the pronephros develops was morphologically examined in chick embryos from Hamburger,Hamilton stage (ST) 8+ to ST34. The intermediate mesoderm, from which the pronephros arises, was first seen as a faint ridge of undifferentiated mesoderm between the segmental plate and lateral plate at ST8+. It formed a cell cord at the level of the 6th to the presumptive 13th somites at ST9 to ST10. This cell cord then separated into dorsal and ventral parts, the former becoming the nephric duct and the latter the tubules by ST14. The primordia of the external glomeruli (PEGs) appeared at ST15 through some epithelial cells protruding in the nephrostome (the opening of the nephric tubule into the body cavity). PEGs formed gradually in the caudal direction until ST18, while the pronephric tubules and PEGs in cranial locations disappeared. At this stage, only a few PEGs remained at the level of the 13th and 14th somites and these developed from ST23 to ST29 to become ultrastructurally similar to the glomeruli of the functional kidney. From these observations in the avian pronephros, we infer that the pronephric duct and tubules both form from a cell cord in the intermediate mesoderm and at the same time, but later develop differently. [source] Patterning of the axial musculature in the developing chick embryo (Gallus)JOURNAL OF ANATOMY, Issue 5 2002P. J. Adds While the development and patterning events of the skeletal, myogenic and connective tissues of the developing limb buds of the chick have been relatively well studied, there is little known about the formation of the epaxial muscles and tendons. The epaxial muscles form the postvertebral muscle groups and develop from the myotome of the somite. The myotome develops from myogenic precursors migrating from the dorsomedial lip of the dermomyotome. These myogenic cells differentiate in a cranial to caudal sequence with the muscle fibres also orientated in a cranial to caudal direction. Here we use immunohistological staining both in whole mount and in transverse sections of chick embryos from various stages of development. Antibodies to the myosin heavy chain or tenascin were used to visualise the development of the epaxial muscles and tendons. The first myotomal muscle fibres are differentiated by Hamburger and Hamilton (H & H) stage 10 in the cranial somites, and differentiation proceeds caudally until at least H & H stage 22,23. Further development of the epaxial muscles does not take place until H & H stage 26,27 with the splitting of the myotome into the individual muscles. We demonstrate how the myotome splits into the individual muscles and how some muscle fibres become reorientated into a more oblique orientation. This delayed development and reorientation of muscle fibres is unique to the epaxial muscles. [source] High Density Endocardial Mapping of Shifts in the Site of Earliest Depolarization During Sinus Rhythm and Sinus TachycardiaPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 4p1 2003TIM R. BETTS BETTS, T.R., et al.: High Density Endocardial Mapping of Shifts in the Site of Earliest Depolarization During Sinus Rhythm and Sinus Tachycardia.Previous mapping studies of sinus rhythm suggest faster rates arise from more cranial sites within the lateral right atrium. In the intact, beating heart, mapping has been limited to epicardial plaques or single endocardial catheters. The present study was designed to examine shifts in the site of the earliest endocardial depolarization during sinus rhythm and sinus tachycardia using high density activation mapping. Noncontact mapping of the right atrium during sinus rhythm was performed on ten anesthetized swine. Recordings were made during sinus rhythm, phenylephrine infusion, and isoproterenol infusion. The hearts were then excised and the histological sinus node identified. The mean minimum and maximum cycle lengths recorded were355 ± 43and717 ± 108 ms. A median of three (range two to five) sites of earliest endocardial depolarization were documented in each animal. With increasing heart rate the site of earliest endocardial depolarization remained stationary until a sudden shift in a cranial or caudal direction, often to sites beyond the histological sinoatrial node. The endocardial shift was unpredictable with considerable variation between animals; however, faster rates arose from more cranial sites(r = 0.46, P = 0.023). There was no difference in the mean cycle length of sinus rhythm originating from specific positions on the terminal crest(r = 0.44, P = 0.17). Cranial sites displayed a more diffuse pattern of early depolarization than caudal sites. In the porcine heart the relationship between heart rate and site of earliest endocardial depolarization shows considerable variation between individual animals. These findings may have implications for clinical mapping and ablation procedures. (PACE 2003; 26[Pt. I]:874,882) [source] Initial pattern of angiogenesis and bone formation following lateral ridge augmentation using rhPDGF and guided bone regeneration: an immunohistochemical study in dogsCLINICAL ORAL IMPLANTS RESEARCH, Issue 1 2010Frank Schwarz Abstract Objectives: To evaluate (i) the effects of rhPDGF-BB on localized ridge augmentation using a natural bone mineral (NBM), and (ii) the influence of a collagen membrane (CM) on factor activity. Materials and methods: Chronic-type alveolar ridge defects (n=4 dogs) were randomly allocated in a split-mouth design as follows: upper jaw: NBM+rhPDGF-BB+CM (test) vs. NBM+rhPDGF-BB (control), and lower jaw: NBM+rhPDGF-BB+CM (test) vs. NBM+CM (control). After 3 weeks, dissected blocks were prepared for immunohistochemical (angiogenesis , TG) and histomorphometrical analysis [e.g. augmented area (AA), mineralized , (MT), non-mineralized tissue (NMT) (mm2)]. Results: Lower jaw: TG and mineralization of AA mainly originated from the defect borders. Test sites revealed a pronounced TG antigen reactivity and higher AA and MT values (mean and median). Upper jaw: control sites revealed a dislocation of AA in caudal direction, but also an improved vascularization in the peripheral wound area. While MT values (median) appeared to be comparable in both groups, AA, NMT, and NBM values (mean and median) tended to be higher at test sites. Conclusions: It was concluded that (i) rhPDGF-BB soak-loaded on NBM might have the potential to support bone formation at chronic-type lateral ridge defects, and (ii) the application of CM did not seem to interfere with the factor activity, but ensured a stabilization of the graft particles. To cited this article: Schwarz F, Ferrari D, Podolsky L, Mihatovic I, Becker J. Initial pattern of angiogenesis and bone formation following lateral ridge augmentation using rhPDGF and guided bone regeneration: an immunohistochemical study in dogs. Clin. Oral Impl. Res. 21, 2010; 90,99. [source] Functional segregation of cortical language areas by sentence repetitionHUMAN BRAIN MAPPING, Issue 5 2006Ghislaine Dehaene-Lambertz Abstract The functional organization of the perisylvian language network was examined using a functional MRI (fMRI) adaptation paradigm with spoken sentences. In Experiment 1, a given sentence was presented every 14.4 s and repeated two, three, or four times in a row. The study of the temporal properties of the BOLD response revealed a temporal gradient along the dorsal,ventral and rostral,caudal directions: From Heschl's gyrus, where the fastest responses were recorded, responses became increasingly slower toward the posterior part of the superior temporal gyrus and toward the temporal poles and the left inferior frontal gyrus, where the slowest responses were observed. Repetition induced a decrease in amplitude and a speeding up of the BOLD response in the superior temporal sulcus (STS), while the most superior temporal regions were not affected. In Experiment 2, small blocks of six sentences were presented in which either the speaker voice or the linguistic content of the sentence, or both, were repeated. Data analyses revealed a clear asymmetry: While two clusters in the left superior temporal sulcus showed identical repetition suppression whether the sentences were produced by the same speaker or different speakers, the homologous right regions were sensitive to sentence repetition only when the speaker voice remained constant. Thus, hemispheric left regions encode linguistic content while homologous right regions encode more details about extralinguistic features like speaker voice. The results demonstrate the feasibility of using sentence-level adaptation to probe the functional organization of cortical language areas. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source] |