| |||
Cationic Peptides (cationic + peptide)
Selected AbstractsInfluence of N-Terminal Hydrophobicity of Cationic Peptides on Thermodynamics of their Interaction with Plasmid DNACHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2009Geetha N. Goparaju There is a need to understand the thermodynamics of interaction of cationic peptides with DNA to design better peptide based non-viral gene delivery vectors. The main aim of this study was to understand the influence of N-terminal hydrophobicity of cationic amphiphilic peptides on thermodynamics of interaction with plasmid DNA. The model peptides used were TATPTD and TATPTDs modified at the N-terminal with hydrophobic amino acids. The thermodynamic binding data from isothermal titration calorimetry were compared with ethidium bromide analysis and ultrafiltration to correlate the binding parameters with the structural features of the various peptides used. It was observed that peptides having a smaller hydrophobic domain at the N-terminal have good DNA condensing ability compared with the ones with a longer hydrophobic domain. Calorimetry of peptides that reached saturation binding indicated that enthalpy and entropy are favorable for the interaction. Moreover, the interaction of these peptides with DNA appears to be predominantly electrostatic. [source] The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spiderFEBS JOURNAL, Issue 4 2002Nicolas Mandard Gomesin is the first peptide isolated from spider exhibiting antimicrobial activities. This highly cationic peptide is composed of 18 amino-acid residues including four cysteines forming two disulfide linkages. The solution structure of gomesin has been determined using proton two-dimensional NMR (2D-NMR) and restrained molecular dynamics calculations. The global fold of gomesin consists in a well-resolved two-stranded antiparallel ,,sheet connected by a noncanonical ,,turn. A comparison between the structures of gomesin and protegrin-1 from porcine and androctonin from scorpion outlines several common features in the distribution of hydrophobic and hydrophilic residues. The N- and C-termini, the ,,turn and one face of the ,,sheet are hydrophilic, but the hydrophobicity of the other face depends on the peptide. The similarities suggest that the molecules interact with membranes in an analogous manner. The importance of the intramolecular disulfide bridges in the biological activity of gomesin is being investigated. [source] UV resonance Raman spectroscopy probes the localization of tryptophan-containing antimicrobial peptides in lipid vesiclesJOURNAL OF RAMAN SPECTROSCOPY, Issue 3 2009Bryan Quan Abstract In this work we employed UV resonance Raman spectroscopy with 229 nm excitation to study two tryptophan-containing antimicrobial peptides with a broad-spectrum activity against Gram-positive and Gram-negative bacteria: lactoferricin B (LfB, RRWQWRMKKLG) and pEM-2 (KKWRWWLKALAKK). UV resonance Raman spectra of both peptides are dominated by tryptophan bands. Raman spectra of LfB and pEM-2 in D2O and 2,2,2-trifluoro ethanol (TFE) have been measured and used to identify the hydrogen-bond strength marker bands W6 and W17. The tryptophan doublet, W7, at 1340 and 1360 cm,1 was used to detect an increase in the hydrophobicity of Trp environment in TFE. The spectra of LfB in complex with model cell membranes composed of zwitterionic dipalmitoylglycero-phosphocholine (DPPC) or anionic dipalmitoyglycero-phosphoglycerol (DPPG) lipid vesicles revealed a more hydrophobic Trp environment in DPPG, suggesting stronger interactions between the cationic peptide and anionic model cell membrane. Copyright © 2008 John Wiley & Sons, Ltd. [source] Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilusJOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2007A.E. Dobson Abstract Aim: To determine if a 9·5-kb region on the Lactobacillus acidophilus NCFM genome, encoded the genetic determinants for regulation and production of lactacin B, a class II bacteriocin. Methods: Transcriptional analysis was used to identify a 9·5-kb polycistronic region suspected of encoding the lab operon. The 12 putative open reading frames (LBA1803,LBA1791) were organized into three clusters: a production and regulation cluster encoding a putative two-component signal transduction system; an export cluster encoding a putative ABC transporter and a final cluster composed of three unknown proteins. Seven genes were typical of bacteriocins, encoding small, cationic peptides, each with an N-terminal double-glycine leader motif. Inactivation of a predicted ABC transporter completely abolished bacteriocin activity. When cloned and expressed together, LBA1803,LBA1800 resulted in markedly higher levels of lactacin B activity. The four peptides were chemically synthesized but exhibited no bacteriocin activity, alone or in combination. Only LBA1800 induced lactacin B production in broth cultures. Conclusions: Lactacin B production is encoded within the 9·5-kb lab operon of 12 genes that are transcribed in a single transcript. LBA1800 is an inducing peptide of bacteriocin production. Significance and Impact of the Study: A three-component regulatory system common to class II bacteriocins regulates the production of this bacteriocin by Lact. acidophilus. [source] Studies on the cellular uptake of substance P and lysine-rich, KLA-derived model peptides,JOURNAL OF MOLECULAR RECOGNITION, Issue 1 2005Johannes Oehlke Abstract In the last decade many peptides have been shown to be internalized into various cell types by different, poorly characterized mechanisms. This review focuses on uptake studies with substance P (SP) aimed at unravelling the mechanism of peptide-induced mast cell degranulation, and on the characterization of the cellular uptake of designed KLA-derived model peptides. Studies on structure,activity relationships and receptor autoradiography failed to detect specific peptide receptors for the undecapeptide SP on mast cells. In view of these findings, a direct interaction of cationic peptides with heterotrimeric G proteins without the participation of a receptor has been proposed. Such a process would require insertion into and translocation of peptides across the plasma membrane. In order to clarify whether a transport of cationic peptides into rat peritoneal mast cells is possible, transport studies were performed by confocal laser scanning microscopy (CLSM) using fluorescence-labeled Arg3,Orn7 -SP and its D -amino acid analog, all- D -Arg3,Orn7 -SP, as well as by electron microscopic autoradiography using 3H-labelled SP and 125I-labelled all- D -SP. The results obtained by CLSM directly showed translocation of SP peptides into pertussis toxin-treated cells. Kinetic experiments indicated that the translocation process was rapid, occurring within a few seconds. Mast cell degranulation induced by analog of magainin 2 amide, neuropeptide Y and the model peptide acetyl-KLALKLALKALKAALKLA-amide was also found to be very fast, pointing to an extensive translocation of the peptides. In order to learn more about structural requirements for the cellular uptake of peptides, the translocation behavior of a set of systematically modified KLA-based model peptides has been studied in detail. By two different protocols for determining the amount of internalized peptide, evidence was found that the structure of the peptides only marginally affects their uptake, whereas the efflux of cationic, amphipathic peptides is strikingly diminished, thus allowing their enrichment within the cells. Although the mechanism of cellular uptake, consisting of energy-dependent and -independent contributions, is not well understood, KLA-derived peptides have been shown to deliver various cargos (PNAs, peptides) into cells. The results obtained with SP- and KLA-derived peptides are discussed in the context of the current literature. Copyright © 2004 John Wiley & Sons, Ltd. [source] Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: a critical evaluation of different approachesJOURNAL OF PEPTIDE SCIENCE, Issue 3 2008Stéphane Roux Abstract Most synthesized peptides are nowadays produced using solid-phase procedures. Due to cleavage and purification conditions, they are mainly obtained in the presence of trifluoroacetic acid (TFA) and, for cationic peptides, as trifluoroacetate (TF-acetate) salts. However, TF-acetate interferes with physicochemical characterizations using infrared spectroscopy and might significantly affect the in vivo studies. Thus, TF-acetate exchange by another counter-ion is often required. Up to now, the classical procedure has consisted of freeze-drying the peptide several times in the presence of an excess of a stronger acid than TFA (pKa ,0): generally HCl (pKa = , 7). This approach means that working at pH < 1 can induce peptide degradation. We therefore tested three different approaches to exchange the tightly bound TF-acetate counter-ion from the dicationic octapeptide lanreotide: (i) reverse-phase HPLC, (ii) ion-exchange resin, and (iii) deprotonation/reprotonation cycle of the amino groups. The first two approaches allow the partial to almost complete exchange of the TF-acetate counter-ion by another ion from an acid weaker than TFA, such as acetic acid (pKa = 4.5), and the third requires a basic solution that permits the complete removal of TF-acetate counter-ion. The efficiency of these three procedures was tested and compared by using different analytical techniques such as 19F-NMR, 1H-NMR and attenuated total reflectance Fourier transformed infrared spectroscopy (ATR FT-IR). We also show that ATR-IR can be used to monitor the TFA removal. The counter-ion exchange procedures described in this study are easy to carry out, fast, harmless and reproducible. Moreover, two of them offer the very interesting possibility of exchanging the initial TF-acetate by any other counter-ion. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] BIOCHEMISTRY OF SILICA BIOMINERALIZATION IN DIATOMSJOURNAL OF PHYCOLOGY, Issue 2000M. Sumper Diatoms are well known for the intricate patterns of their silica-based cell walls. The complex structures of diatom cell walls are species specific and become precisely reproduced during each cell division cycle, indicating a genetic control of silica biomineralization. Therefore, the formation of the diatom cell wall has been regarded as a paradigm for controlled production of nanostructured silica. However, the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. Recently, we have shown that a set of highly cationic peptides (called silaffins) isolated from Cylindrotheca fusiformis shells are able to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Different silaffin species produce different morphologies of the precipitated silica. Silaffins contain covalently modified Lys-Lys elements. One of these lysine residues bears a novel type of protein modification, a polyamine consisting of 6,11 repeats of the N-methyl-propylamine unit. In addition to the silaffins, additional polyamine-containing substances have been isolated from a number of diatom species that may be involved in the control of biosilica morphology. Scanning electron microscopic analysis of diatom shells isolated in statu nascendi provide insights into the processes of pattern formation in biosilica. A model will be discussed that explains production of nanostructured biosilica in diatoms on the basis of these experimental results. [source] Escherichia coli outer membrane protease OmpT confers resistance to urinary cationic peptidesMICROBIOLOGY AND IMMUNOLOGY, Issue 8 2010Chang-Ye Hui ABSTRACT Escherichia coli OmpT, located in the outer membrane, has been characterized as a plasminogen activator, with the ability to hydrolyze protamine and block its entry. In this investigation, a complex of low molecular weight cationic peptides purified from human urine by a combination of membrane ultrafiltration and weak cation exchange chromatography was characterized. The impact of OmpT on E. coli resistance to urinary cationic peptides was investigated by testing ompT knockout strains. The ompT mutants were more susceptible to urinary cationic peptides than ompT+ strains, and this difference was abolished by complementation of the mutants with pUC19 carrying the ompT gene. The urinary protease inhibitor ulinastatin greatly decreased the resistance of the ompT+ strains. Overall, the data indicate that OmpT may help E. coli persist longer in the urinary tract by enabling it to resist the antimicrobial activity of urinary cationic peptides. [source] Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosaMOLECULAR MICROBIOLOGY, Issue 1 2003Joseph B. McPhee Summary The two-component regulatory system PhoP-PhoQ of Pseudomonas aeruginosa regulates resistance to cationic antimicrobial peptides, polymyxin B and aminoglycosides in response to low Mg2+ conditions. We have identified a second two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides. This system responds to limiting Mg2+, and is affected by a phoQ, but not a phoP mutation. Inactivation of the pmrB sensor kinase and pmrA response regulator greatly decreased the expression of the operon encoding pmrA-pmrB while expression of the response regulator pmrA in trans resulted in increased activation suggesting that the pmrA-pmrB operon is autoregulated. Interposon mutants in pmrB, pmrA, or in an intergenic region upstream of pmrA-pmrB exhibited two to 16-fold increased susceptibility to polymyxin B and cationic antimicrobial peptides. The pmrA-pmrB operon was also found to be activated by a number of cationic peptides including polymyxins B and E, cattle indolicidin and synthetic variants as well as LL-37, a component of human innate immunity, whereas peptides with the lowest minimum inhibitory concentrations tended to be the weakest inducers. Additionally, we showed that the putative LPS modification operon, PA3552-PA3559, was also induced by cationic peptides, but its expression was only partially dependent on the PmrA-PmrB system. The discovery that the PmrA-PmrB two-component system regulates resistance to cationic peptides and that both it and the putative LPS modification system are induced by cationic antimicrobial peptides has major implications for the development of these antibiotics as a therapy for P. aeruginosa infections. [source] The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelaeAPMIS, Issue 11 2002Review article The literature dealing with the biochemical basis of bacteriolysis and its role in inflammation, infection and in post-infectious sequelae is reviewed and discussed. Bacteriolysis is an event that may occur when normal microbial multiplication is altered due to an uncontrolled activation of a series of autolytic cell-wall breaking enzymes (muramidases). While a low-level bacteriolysis sometimes occurs physiologically, due to "mistakes" in cell separation, a pronounced cell wall breakdown may occur following bacteriolysis induced either by beta-lactam antibiotics or by a large variety of bacteriolysis-inducing cationic peptides. These include spermine, spermidine, bactericidal peptides defensins, bacterial permeability increasing peptides from neutrophils, cationic proteins from eosinophils, lysozyme, myeloperoxidase, lactoferrin, the highly cationic proteinases elastase and cathepsins, PLA2, and certain synthetic polyamino acids. The cationic agents probably function by deregulating lipoteichoic acid (LTA) in Gram-positive bacteria and phospholipids in Gram-negative bacteria, the presumed regulators of the autolytic enzyme systems (muramidases). When bacteriolysis occurs in vivo, cell-wall- and -membrane-associated lipopolysaccharide (LPS (endotoxin)), lipoteichoic acid (LTA) and peptidoglycan (PPG), are released. These highly phlogistic agents can act on macrophages, either individually or in synergy, to induce the generation and release of reactive oxygen and nitrogen species, cytotoxic cytokines, hydrolases, proteinases, and also to activate the coagulation and complement cascades. All these agents and processes are involved in the pathophysiology of septic shock and multiple organ failure resulting from severe microbial infections. Bacteriolysis induced in in vitro models, either by polycations or by beta-lactams, could be effectively inhibited by sulfated polysaccharides, by D-amino acids as well as by certain anti-bacteriolytic antibiotics. However, within phagocytic cells in inflammatory sites, bacteriolysis tends to be strongly inhibited presumably due to the inactivation by oxidants and proteinases of the bacterial muramidases. This might results in a long persistence of non-biodegradable cell-wall components causing granulomatous inflammation. However, persistence of microbial cell walls in vivo may also boost innate immunity against infections and against tumor-cell proliferation. Therapeutic strategies to cope with the deleterious effects of bacteriolysis in vivo include combinations of autolysin inhibitors with combinations of certain anti-inflammatory agents. These might inhibit the synergistic tissue- and- organ-damaging "cross talks" which lead to septic shock and to additional post-infectious sequelae. [source] Secondary conformation of short lysine- and leucine-rich peptides assessed by optical spectroscopies: Effect of chain length, concentration, solvent, and timeBIOPOLYMERS, Issue 1 2006Belén Hernández Abstract Solution secondary structures of three synthetic cationic peptides, currently used in antisense oligonucleotide delivery into living cells, have been analyzed by means of circular dichroism (CD) and Raman scattering in different buffers as a function of concentration and time. All three peptides are of minimalist conception, i.e., formed by only two types of amino acids (leucine: L and lysine: K). Two of these peptides contain 15 aminoacids: Nter - KLLKLLLKLLLKLLK (L10K5), Nter -KLKLKLKLKLKLKLK (L7K8), and the third one has only 9 residues: Nter -KLKLKLKLK (L4K5). The conformational behavior of the 15-mers in pure water differs considerably one from another. Although both of them are initially disordered in the 50,350 ,M range, L10K5 gradually undergoes a disordered to , -helix transition for molecular concentrations above 100 ,M. In all other solvents used, L10K5 adopts a stable , -helical conformation. In methanol and methanol/Tris mixture, nonnative , -helices can be induced in both KL-alternating peptides, i.e., L7K8 and L4K5. However, in major cases and with a time delay depending on peptide concentration, , -like structures can be gradually formed in both solutions. In PBS and methanol/PBS mixture, the tendency for L7K8 and L4K5 is to form structures belonging to , -family. A discussion has been undertaken on the effect of counterions as well as their nature in the stabilization of ordered structures in both KL-alternating peptides. © 2005 Wiley Periodicals, Inc. Biopolymers 81: 8,19, 2006 This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetiiCELLULAR MICROBIOLOGY, Issue 4 2007Daniel E. Voth Summary Most intracellular parasites employ sophisticated mechanisms to direct biogenesis of a vacuolar replicative niche that circumvents default maturation through the endolysosomal cascade. However, this is not the case of the Q fever bacterium, Coxiella burnetii. This hardy, obligate intracellular pathogen has evolved to not only survive, but to thrive, in the harshest of intracellular compartments: the phagolysosome. Following internalization, the nascent Coxiella phagosome ultimately develops into a large and spacious parasitophorous vacuole (PV) that acquires lysosomal characteristics such as acidic pH, acid hydrolases and cationic peptides, defences designed to rid the host of intruders. However, transit of Coxiella to this environment is initially stalled, a process that is apparently modulated by interactions with the autophagic pathway. Coxiella actively participates in biogenesis of its PV by synthesizing proteins that mediate phagosome stalling, autophagic interactions, and development and maintenance of the mature vacuole. Among the potential mechanisms mediating these processes is deployment of a type IV secretion system to deliver effector proteins to the host cytosol. Here we summarize our current understanding of the cellular events that occur during parasitism of host cells by Coxiella. [source] Influence of N-Terminal Hydrophobicity of Cationic Peptides on Thermodynamics of their Interaction with Plasmid DNACHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2009Geetha N. Goparaju There is a need to understand the thermodynamics of interaction of cationic peptides with DNA to design better peptide based non-viral gene delivery vectors. The main aim of this study was to understand the influence of N-terminal hydrophobicity of cationic amphiphilic peptides on thermodynamics of interaction with plasmid DNA. The model peptides used were TATPTD and TATPTDs modified at the N-terminal with hydrophobic amino acids. The thermodynamic binding data from isothermal titration calorimetry were compared with ethidium bromide analysis and ultrafiltration to correlate the binding parameters with the structural features of the various peptides used. It was observed that peptides having a smaller hydrophobic domain at the N-terminal have good DNA condensing ability compared with the ones with a longer hydrophobic domain. Calorimetry of peptides that reached saturation binding indicated that enthalpy and entropy are favorable for the interaction. Moreover, the interaction of these peptides with DNA appears to be predominantly electrostatic. [source] |