| |||
Catfish Virus (catfish + virus)
Selected AbstractsIridovirus infections in finfish , critical review with emphasis on ranavirusesJOURNAL OF FISH DISEASES, Issue 2 2010R J Whittington Abstract Viruses in three genera of the family Iridoviridae (iridoviruses) affect finfish. Ranaviruses and megalocytiviruses are recently emerged pathogens. Both cause severe systemic disease, occur globally and affect a diversity of hosts. In contrast, lymphocystiviruses cause superficial lesions and rarely cause economic loss. The ranavirus epizootic haematopoietic necrosis virus (EHNV) from Australia was the first iridovirus to cause epizootic mortality in finfish. Like other ranaviruses, it lacks host specificity. A distinct but closely related virus, European catfish virus, occurs in finfish in Europe, while very similar ranaviruses occur in amphibians in Europe, Asia, Australia, North America and South America. These viruses can be distinguished from one another by conserved differences in the sequence of the major capsid protein gene, which informs policies of the World Organisation for Animal Health to minimize transboundary spread of these agents. However, limited epidemiological information and variations in disease expression create difficulties for design of sampling strategies for surveillance. There is still uncertainty surrounding the taxonomy of some putative ranaviruses such as Singapore grouper iridovirus and Santee-Cooper ranavirus, both of which cause serious disease in fish, and confusion continues with diseases caused by megalocytiviruses. In this review, aspects of the agents and diseases caused by ranaviruses are contrasted with those due to megalocytiviruses to promote accurate diagnosis and characterization of the agents responsible. Ranavirus epizootics in amphibians are also discussed because of possible links with finfish and common anthropogenic mechanisms of spread. The source of the global epizootic of disease caused by systemic iridoviruses in finfish and amphibians is uncertain, but three possibilities are discussed: trade in food fish, trade in ornamental fish, reptiles and amphibians and emergence from unknown reservoir hosts associated with environmental change. [source] Experimental annotation of channel catfish virus by probabilistic proteogenomic mappingPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2009Dusan Kunec Dr. Abstract Experimental identification of expressed proteins by proteomics constitutes the most reliable approach to identify genomic location and structure of protein-coding genes and substantially complements computational genome annotation. Channel catfish herpesvirus (CCV) is a simple comparative model for understanding herpesvirus biology and the evolution of the Herpesviridae. The canonical CCV genome has 76 predicted ORF and only 12 of these have been confirmed experimentally. We describe a modification of a statistical method, which assigns significance measures, q -values, to peptide identifications based on 2-D LC ESI MS/MS, real-decoy database searches and SEQUEST XCorr and ,Cn scores. We used this approach to identify CCV proteins expressed during its replication in cell culture, to determine protein composition of mature virions and, consequently, to refine the canonical CCV genome annotation. To complement trypsin, we used partial proteinase K digestion, which yielded greater proteome coverage. At FDR <5%, for peptide identifications, we identified 25/76 previously predicted ORF using trypsin and 31/76 using proteinase K. Furthermore, we identified 17 novel protein-coding regions (7 potential ATG-initiated ORF). Most of these novel ORF encode small proteins (<100 amino acids). Directed, strand-specific reverse transcription real-time PCR confirmed RNA expression from 6/7 novel ATG-initiated ORF investigated. [source] Comparison of susceptibility of various fish species to experimental infection with channel catfish virusAQUACULTURE RESEARCH, Issue 16 2009Wan-An Yuan Abstract Channel catfish virus (CCV) disease is an acute haemorrhagic disease in juvenile channel catfish (Ictalurus punctatus). To date channel catfish is the only species affected by natural outbreaks of the CCV but juvenile large mouth bass (Micropterus salmoides) and silurus (Silurus meriaionalis) have suffered high mortalities in recent years in China. Histopathological phenomenon of sick fish is similar to CCV disease, and the identified virus was CCV. In this report, the pathogenicity of infectious CCV was examined by infection trials on the first known host species, the channel catfish and other teleosts. Our results indicated that there were higher detection rates of CCV from large mouth bass and silurus fish. Channel catfish virus did not induce mortality in other cypriniformes, but histopathological studies revealed that carp might be infected by both bathing and intraperitoneal infection. No deaths, clinical or histopathological signs, were found in the six other species exposed by immersion or injection. Experimental infection studies confirm that CCV infect not only channel catfish but also other species (large mouth bass, silutus and carp). The outbreaks of CCV disease only occurred when the cultured temperature was above 25 °C. [source] First detection of channel catfish virus associated with mortality of cultured catfish (Ictalurus punctatus, Rafinesque) in MexicoAQUACULTURE RESEARCH, Issue 13 2007Jesús Genaro Sánchez-Martínez First page of article [source] |