| |||
Catalytic Material (catalytic + material)
Selected AbstractsEfficient Simultaneous Dry Removal of SO2 and NOx from Flue Gas over Copper-Based Catalytic MaterialsASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5-6 2000Gabriele Centi The combined removal of SO2 (DeSOx) and NOx (DeNOx) from flue gas of power plants can be efficiently realized with a dry process using copper-based sorbent-catalysts which oxidize-adsorb SO2 in the form of an easily regenerable copper-sulphate and catalyze the reduction of NO in the presence of NH3/O2. This contribution reviews the results on this topic, discussing in particular the following main aspects: (i) Sorption and catalytic chemistry of the process, (ii) Development and features of the copper-based sorbent-catalyst. (iii) Optimization of the reaction conditions. (iv) Kinetic models of the sorption and catalytic behavior and role of the textural properties of the catalyst, (v) Flowsheet and economics of the process, (vi) Behavior in extended operations and life time cycles. The key features of the technology and its fields of application are also discussed. [source] Catalytic wet air oxidation of phenol using active carbon: performance of discontinuous and continuous reactorsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2001Frank Stüber Abstract Catalytic wet air oxidation (CWAO) of an aqueous phenol solution using active carbon (AC) as catalytic material was compared for a slurry and trickle bed reactor. Semi-batchwise experiments were carried out in a slurry reactor in the absence of external and internal mass transfer. Trickle-bed runs were conducted under the same conditions of temperature and pressure. Experimental results from the slurry reactor study showed that the phenol removal rate significantly increased with temperature and phenol concentration, whereas partial oxygen pressure had little effect. Thus, at conditions of 160,°C and 0.71,MPa of oxygen partial pressure, almost complete phenol elimination was achieved within 2,h for an initial phenol concentration of 2.5,g,dm,3. Under the same conditions of temperature and pressure, the slurry reactor performed at much higher initial rates with respect to phenol removal than the trickle bed reactor, both for a fresh active carbon and an aged active carbon, previously used for 50,h in the trickle bed reactor, but mineralisation was found to be much lower in the slurry reactor. Mass transfer limitations, ineffective catalyst wetting or preferential flow in the trickle bed alone cannot explain the drastic difference in the phenol removal rate. It is likely that the slurry system also greatly favours the formation of condensation polymers followed by their irreversible adsorption onto the AC surface, thereby progressively preventing the phenol molecules to be oxidised. Thus, the application of this type of reactor in CWAO has to be seriously questioned when aiming at complete mineralisation of phenol. Furthermore, any kinetic study of phenol oxidation conducted in a batch slurry reactor may not be useful for the design and scale-up of a continuous trickle bed reactor. © 2001 Society of Chemical Industry [source] Catalytic porous ceramic prepared in-situ by sol-gelation for butane-to-syngas processing in microreactorsAICHE JOURNAL, Issue 7 2009Nico Hotz Abstract In this study, a novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of Rh/ceria/zirconia nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. To investigate the catalytic activity, microreactors containing this foam-like ceramic are employed for the production of hydrogen and carbon monoxide-rich syngas from butane. The effect of operating parameters such as the inlet flow rate on the hydrocarbon processing is analyzed and the limitation of the reactor by diffusion mass transport is investigated. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Enhanced Activity and Stereoselectivity of Polystyrene-Supported Proline-Based Organic Catalysts for Direct Asymmetric Aldol Reaction in WaterEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 31 2009Michelangelo Gruttadauria Abstract Several polystyrene-supported proline dipeptides and a prolinamide derivative were prepared by thiol,ene coupling. These materials were used as catalysts for the direct asymmetric aldol reaction in water, and results compared with unsupported catalysts in water. Such an approach gave more active or stereoselective catalysts compared to the unsupported compounds, showing that our immobilization procedure may be useful to develop catalytic materials with enhanced performance. Moreover, these catalysts can be recovered and reused for at least nine times without loss of activity or can be easily regenerated when their activity has decreased. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Selective control of voltage polarity in a single-chamber solid-oxide fuel cell using the same catalytic electrodes with different sizesIEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 5 2008Akiyoshi Nagata Member Abstract The selective control of the voltage polarity in a single-chamber solid-oxide fuel cell (SC-SOFC) constituting the anode and cathode arranged at the same electrolyte surface of yttria-stabilized zirconia (YSZ) or samaria-doped ceria (SDC) and which can operate in a flowing mixture of hydrogen and oxygen is discussed on the basis of the dissociation and adsorption reactions due to the catalytic materials and electrode configurations. The open circuit voltage (OCV) of SC-SOFC showed the highest value when the H2:O2 ratio was around 2:1, which might be equal to the mol ratio of oxygen and hydrogen based on the reaction of water formation by the electrochemical reaction in the cell. The voltage polarity of the cell using the Pt and LSM (La0.7Sr0.3MnO3) catalysts was the same as in the conventional SOFC such that in the Pt catalysis the anode became negative whereas in the LSM catalysis the cathode was independent of the electrode configurations. In SC-SOFC using the same Pt catalyst, the larger Pt electrode functioned as the cathode desorbing the oxide ion conducting in YSZ or SDC. As a result, it was confirmed that the voltage polarity of SC-SOFC could be selectively controlled by making use of the same catalytic electrodes with different sizes, and that the I,V characteristic of the cell improved by using SDC with Pt electrodes with a surface area ratio of 2:1. © 2008 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source] |