Caspase-independent Pathway (caspase-independent + pathway)

Distribution by Scientific Domains


Selected Abstracts


Growth hormone-releasing peptide 6 protection of hypothalamic neurons from glutamate excitotoxicity is caspase independent and not mediated by insulin-like growth factor I

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009
A. Delgado-Rubín
Abstract Treatment of the fetal hypothalamic neuronal cell line RCA-6 with growth hormone-releasing peptide 6, an agonist of the ghrelin receptor, or insulin-like growth factor I activates intracellular signalling cascades associated with anti-apoptotic actions. Abnormally high concentrations of glutamate provoke over-excitation of neurons leading to cell damage and apoptosis. Thus, the aim of this study was to investigate whether the administration of growth hormone-releasing peptide 6 and insulin-like growth factor I attenuates monosodium glutamate-induced apoptosis in RCA-6 neurons and the mechanisms involved. Two different mechanisms are involved in glutamate-induced cell death, one by means of caspase activation and the second through activation of a caspase-independent pathway of apoptosis mediated by the translocation of apoptosis-inducing factor. Growth hormone-releasing peptide 6 partially reversed glutamate-induced cell death but not the activation of caspases, suggesting blockage of the caspase-independent cell death pathway, which included interference with the translocation of apoptosis-inducing factor to the nucleus associated with the induction of Bcl-2. In contrast, the addition of insulin-like growth factor I to RCA-6 neurons abolished glutamate-induced caspase activation and cell death. These data demonstrate for the first time a neuroprotective role for growth hormone secretagogues in the caspase-independent cell death pathway and indicate that these peptides have neuroprotective effects independent of its induction of insulin-like growth factor I. [source]


The Bcl-2 family pro-apoptotic molecule, BNIP3 regulates activation-induced cell death of effector cytotoxic T lymphocytes

IMMUNOLOGY, Issue 1 2003
J. Wan
Summary BNIP3 is a recently described pro-apoptotic member of the Bcl-2 family and in BNIP3 cDNA-transfected cell lines, cell death occurs via a caspase-independent pathway with opening of the mitochondrial permeability transition (PT) pore and rapid loss of mitochondrial transmembrane potential (,,m). However, its expression or function in physiologic cell types is not known. Our results using the T-cell receptor transgenic mice P14, specific for lymphocyte choreomeningitis virus (LCMV) glycoprotein, show that in contrast to the other Bcl-2 family pro-apoptotic molecules, BNIP3 is transcriptionally highly up-regulated in effector cytotoxic T lymphocytes (CTL). Because CTL have a propensity to undergo activation-induced cell death (AICD) upon restimulation, we tested for other features associated with BNIP3-induced cell death. AICD of CTL was caspase-independent as determined by measuring caspase activation during target cell killing as well as by lack of inhibition with caspase inhibitors. Moreover, similar to BNIP3-induced cell death, CTL apoptosis was associated with increased production of reactive oxygen species and decreased ,,m. Finally, retroviral transduction of BNIP3 antisense RNA diminished AICD in effector CTL. These results suggest that BNIP3 may play an important role in T-cell homeostasis by regulating effector CTL numbers. [source]


Hypoxia-induced apoptosis and tube breakdown are regulated by p38 MAPK but not by caspase cascade in an in vitro capillary model composed of human endothelial cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007
Toshiro Ohta
In order to improve medical treatment of ischemic injury such as myocardial infarction, it is important to elucidate hypoxia-induced changes to endothelial cells. An in vitro blood vessel model, in which HUVECs are stimulated to form a network of capillary-like tubes, was used to analyze hypoxia-induced morphological and biochemical changes. When exposed to hypoxia, the network of capillary tubes broke down into small clusters. This tube breakdown was accompanied by chromatin condensation and cell nuclear fragmentation, morphological markers of apoptosis, and activation of two apoptotic signals, caspase-3 and p38. We investigated what roles caspase cascade and p38 play in hypoxia-induced apoptosis and tube breakdown by using zVAD-fmk and SB203580, specific inhibitors of these two apoptotic signals, respectively. Chromatin condensation and cell nuclear fragmentation and tube breakdown were effectively inhibited by SB203580, but not by zVAD-fmk. SB203580 caused dephosphorylation of p38, which indicates that p38 was autophosphorylated. Inhibition by zVAD-fmk caused slight MW increase in p17 and emergence of p19, which indicates that the inhibitor caused partial processing of caspase-3. Inhibition of p38 suppressed activation of caspase-3 but not vice versa. In addition, these two inhibitors were shown to differentially inhibit cleavage of so-called caspase substrates. SB203580 inhibited cleavage of PARP and lamin A/C, while zVAD-fmk inhibited cleavage of lamin A/C but not that of PARP. Taken together, these results show that p38 is located upstream of caspase cascade and that, although caspase-3 is activated, a p38-regulated caspase-independent pathway is crucial for the execution of hypoxia-induced apoptosis and tube breakdown. J. Cell. Physiol. 211: 673,681, 2007. © 2007 Wiley-Liss, Inc. [source]


Purification, crystallization and data collection of the apoptotic nuclease endonuclease G

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 5 2009
Sei Mee Yoon
Endonuclease G (EndoG) is a mitochondrial enzyme that responds to apoptotic stimuli by translocating to the nucleus and cleaving chromosomal DNA. EndoG is the main apoptotic endonuclease in the caspase-independent pathway. Mouse EndoG without the mitochondrial localization signal (amino-acid residues 1,43) was successfully overexpressed, purified and crystallized using a microbatch method under oil. The initial crystal (type I) was grown in the presence of the detergent CTAB and diffracted to 2.8,Å resolution, with unit-cell parameters a = 72.20, b = 81.88, c = 88.66,Å, , = 97.59° in a monoclinic space group. The crystal contained two monomers in the asymmetric unit, with a predicted solvent content of 46.6%. Subsequent mutation of Cys110 improved the stability of the protein significantly and produced further crystals of types II, III and IV with space groups C2, P41212 (or P43212) and P212121, respectively, in various conditions. This suggests the critical involvement of this conserved cysteine residue in the crystallization process. [source]


NV-128, a novel isoflavone derivative, induces caspase-independent cell death through the Akt/mammalian target of rapamycin pathway

CANCER, Issue 14 2009
Ayesha B. Alvero MD
Abstract BACKGROUND: Resistance to apoptosis is 1 of the key events that confer chemoresistance and is mediated by the overexpression of antiapoptotic proteins, which inhibit caspase activation. The objective of this study was to evaluate whether the activation of an alternative, caspase-independent cell death pathway could promote death in chemoresistant ovarian cancer cells. The authors report the characterization of NV-128 as an inducer of cell death through a caspase-independent pathway. METHODS: Primary cultures of epithelial ovarian cancer (EOC) cells were treated with increasing concentration of NV-128, and the concentration that caused 50% growth inhibition (GI50) was determined using a proprietary assay. Apoptotic proteins were characterized by Western blot analyses, assays that measured caspase activity, immunohistochemistry, and flow cytometry. Protein-protein interactions were determined using immunoprecipitation. In vivo activity was measured in a xenograft mice model. RESULTS: NV-128 was able to induce significant cell death in both paclitaxel-resistant and carboplatin-resistant EOC cells with a GI50 between 1 ,g/mL and 5 ,g/mL. Cell death was characterized by chromatin condensation but was caspase-independent. The activated pathway involved the down-regulation of phosphorylated AKT, phosphorylated mammalian target of rapamycin (mTOR), and phosphorylated ribosomal p70 S6 kinase, and the mitochondrial translocation of beclin-1 followed by nuclear translocation of endonuclease G. CONCLUSIONS: The authors characterized a novel compound, NV-128, which inhibits mTOR and promotes caspase-independent cell death. The current results indicated that inhibition of mTOR may represent a relevant pathway for the induction of cell death in cells resistant to the classic caspase-dependent apoptosis. These findings demonstrate the possibility of using therapeutic drugs, such as NV-128, which may have beneficial effects in patients with chemoresistant ovarian cancer. Cancer 2009. © 2009 American Cancer Society. [source]


Fibroblast apoptosis induced by Porphyromonas gingivalis is stimulated by a gingipain and caspase-independent pathway that involves apoptosis-inducing factor

CELLULAR MICROBIOLOGY, Issue 11 2007
Tesfahun Desta
Summary Porphyromonas gingivalis is an oral bacterium that causes pathology in a number of dental infections that are associated with increased fibroblast cell death. Studies presented here demonstrated that P. gingivalis stimulates cell death by apoptosis rather than necrosis. Unlike previous studies apoptosis was induced independent of proteolytic activity and was also independent of caspase activity because a pancaspase inhibitor, Z-VAD-fmk, had little effect. Moreover, P. gingivalis downregulated caspase-3 mRNA levels and caspase-3 activity. The consequence of this downregulation was a significant reduction in tumour necrosis factor-,-induced apoptosis, which is caspase-3-dependent. Immunofluorescence and immunoblot analysis revealed P. gingivalis -induced translocation of apoptosis-inducing factor (AIF) from the cytoplasm to the nucleus. siRNA studies were undertaken and demonstrated that P. gingivalis stimulated cell death was significantly reduced when AIF was silenced (P < 0.05). Treatment of human gingival fibroblasts with H-89, a protein kinase A inhibitor that blocks AIF activation also reduced P. gingivalis -induced apoptosis (P < 0.05). These results indicate that P. gingivalis causes fibroblast apoptosis through a pathway that involves protein kinase A and AIF, is not dependent upon bacterial proteolytic activity and is also independent of the classic apoptotic pathways involving caspase-3. [source]