Carrying Capacity (carrying + capacity)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Carrying Capacity

  • load carrying capacity


  • Selected Abstracts


    Experimentelle Untersuchungen zum Schubtragverhalten dünner Scheiben aus Ultrahochfestem Beton,

    BETON- UND STAHLBETONBAU, Issue 9 2009
    Julia Heidrich Dipl.-Ing.
    Versuche; Baustoffe Abstract Ultrahochfester Beton ist ein Baustoff mit herausragenden mechanischen Eigenschaften. Weit gespannte Brückentragwerke mit schlanken Stegen aus Ultrahochfestem Beton sind denkbar. Dadurch kann Eigengewicht und Material gespart werden. Die Lebensdauer der Brücken würde aufgrund der Widerstandsfähigkeit gegen mechanische und chemische Einflüsse steigen. Die Zug- und die Druckfestigkeit wurden inzwischen in einigen Forschungsarbeiten untersucht. Demgegenüber gibt es noch kaum Erkenntnisse zum Schubtragverhalten. Auch existieren noch keine Normen oder Vorschriften dazu. Eine Arbeit am Institut für Betonbau der TU-Graz befasst sich mit der Schubtragfähigkeit von schlanken, nicht beulgefährdeten Scheiben aus Ultrahochfestem Beton. Shear Carrying Capacity of Ultra High Performance Concrete Ultra High Performance Concrete is a building material with fantastic mechanical properties. Slender, durable Bridges with large spans and thin webs are imaginable. The life cycle will increase because of the chemical and mechanical resistance. The tension and compression strength are well investigated, but there are less investigations about the shear carrying capacity. One research work at the Institute for Structural Concrete of Graz University of Technology deals with the shear carrying capacity of thin Panels without buckling risk. [source]


    Carrying Capacity and Potential Production of Ungulates for Human Use in a Mexican Tropical Dry Forest

    BIOTROPICA, Issue 4 2007
    Salvador Mandujano
    ABSTRACT Data are provided on the carrying capacity and potential production for sustainable human use of white-tailed deer (Odocoileus virginianus) and collared peccary (Pecari tajacu) in a protected tropical dry forest at Chamela on the Pacific coast of Mexico. In this paper, the carrying capacity was defined as the equilibrium density plus the number of animals removed by predators. The equilibrium point was estimated from the density dependent relationship between the finite population growth rate and the current density according to a logistic model. Annual density was estimated using the line transect method. Carrying capacity estimates were 16.5 to 17.2 deer/km2 and 9.3,9.5 peccaries/km2, representing a combined biomass of 841,874 kg/km2. A potential production for human use of 2.1 deer/km2 and 4.4 peccaries/km2 was estimated employing the model of Robinson and Redford (1991). The data suggest that, in the protected tropical dry forest of Chamela, the density and biomass of wild ungulates can maintain a similar or greater density and biomass than other Neotropical forests. To obtain an accurate estimation of the maximum sustainable yield (MSY), it is necessary to consider predation. From a management point of view, it is important to consider that carrying capacity varies as a function of the rainfall pattern. RESUMEN Se presentan datos acerca de la capacidad de carga y la producción potencial del venado cola blanca (Odocoileus virginianus) y pecarí de collar (Pecari tajacu) para aprovechamiento humano en un bosque tropical seco de Chamela en la costa Pacífica de México. En este trabajo se definió capacidad de carga como la densidad en el punto de equilibrio del crecimiento poblacional más el número de animales removidos por los depredadores. La densidad en equilibrio se estimó a partir de la relación de denso-dependencia entre la tasa finita de crecimiento poblacional y la densidad anual de acuerdo al modelo logístico. La densidad anual se estimó empleando el método de transecto de línea. La capacidad de carga se estimó en 16.5 a 17.2 venados/km2 y 9.3 a 9.5 pecaries/km2, y una biomasa combinada de 841 a 874 kg/km2. Empleando el modelo de Robinson y Redford (1991) se estimó una producción potencial para aprovechamiento humano de 2.1 venados/km2 y 4.4 pecaries/km2. Los datos indican que en bosque tropical seco protegido de Chamela la densidad y biomasa de los ungulados silvestres puede ser similar o mayor en comparación con otros bosques neotropicales. Para obtener una estimación precisa de la cosecha máxima sostenible es importante considerar el efecto de la depredación. Desde una perspectiva de manejo, se debe incorporar la variación en la capacidad de carga en función del patrón de lluvias. [source]


    Carrying capacity and survival strategy for the Pacific bluefin tuna, Thunnus orientalis, in the Western Pacific

    FISHERIES OCEANOGRAPHY, Issue 2 2006
    YASUO MATSUKAWA
    Abstract The carrying capacity for the Pacific bluefin tuna at each life stage is estimated and its survival strategy is examined numerically, using a new method to define the hypothetical capacity, the standard population, and the search volumes that are necessary and are feasible for the tuna. The carrying capacity for the adult is estimated at 1,2 × 106 individuals, which corresponds with 5,10% of the hypothetical capacity and is comparable with the maximum levels of the southern and the Atlantic bluefin tuna populations. It is hypothesized semiquantitatively that the migration at each life stage and the remarkable decrement of growth at 120 days and about 40 cm occur as an evolutionary response to population excess over the carrying capacity. It is also hypothesized semiquantitatively that the early larvae have minimal food available in the Subtropical Water and develop the predatory morphology, high growth rate, and high mobility, however, at the expense of a high mortality as an evolutionary response to the tuna spawning in the Subtropical Water. This method may be an available tool to not only investigate the carrying capacity and survival strategy of a specific fish species, but also predict when and in how much abundance the fish species occurs in a specific area of its habitat. [source]


    Climate, competition, and the coexistence of island lizards

    FUNCTIONAL ECOLOGY, Issue 2 2006
    L. B. BUCKLEY
    Summary 1The influence of environmental temperatures and competition combine to determine the distributions of island lizards. Neither a bioenergetic model nor simple models of competition alone can account for the distributions. A mechanistic, bioenergetic model successfully predicts how the abundance of a solitary Anolis lizard species will decline along an island's elevation gradient. However, the abundance trends for sympatric lizards diverge from the predictions of the non-interactive model. 2Here we incorporate competition in the bioenergetic model and examine how different forms of competition modify the temperature-based abundance predictions. 3Applying the bioenergetic model with competition to an island chain tests whether the model can successfully predict on which islands two lizards species will coexist. 4Coexistence is restricted to the two largest islands, which the model predicts have substantially greater carrying capacities than the smaller islands. The model successfully predicts that competition prevents species coexistence on the smallest islands. However, the model predicts that the mid-sized islands are capable of supporting substantial populations of both species. Additional island characteristics, such as habitat diversity, resource availability and temporal disturbance patterns, may prevent coexistence. [source]


    Incorporating movement into models of grey seal population dynamics

    JOURNAL OF ANIMAL ECOLOGY, Issue 3 2006
    PHILIP J. HARRISON
    Summary 1One of the most difficult problems in developing spatially explicit models of population dynamics is the validation and parameterization of the movement process. We show how movement models derived from capture,recapture analysis can be improved by incorporating them into a spatially explicit metapopulation model that is fitted to a time series of abundance data. 2We applied multisite capture,recapture analysis techniques to photo-identification data collected from female grey seals at the four main breeding colonies in the North Sea between 1999 and 2001. The best-fitting movement models were then incorporated into state-space metapopulation models that explicitly accounted for demographic and observational stochasticity. 3These metapopulation models were fitted to a 20-year time series of pup production data for each colony using a Bayesian approach. The best-fitting model, based on the Akaike Information Criterion (AIC), had only a single movement parameter, whose confidence interval was 82% less than that obtained from the capture,recapture study, but there was some support for a model that included an effect of distance between colonies. 4The state-space modelling provided improved estimates of other demographic parameters. 5The incorporation of movement, and the way in which it was modelled, affected both local and regional dynamics. These differences were most evident as colonies approached their carrying capacities, suggesting that our ability to discriminate between models should improve as the length of the grey seal time series increases. [source]


    THE EFFECT OF INFORMATION ON A STOCHASTIC, SPATIALLY DISTRIBUTED FISHERY

    NATURAL RESOURCE MODELING, Issue 2 2003
    GREG CRIPE
    ABSTRACT. Survival rates and carrying capacities in a fishery may be strongly affected by variations in climatic factors. When the stock is under the control of a single manager, information about the stochastic growth parameters leads to improved economic returns. However, when the stock is transboundary, additional information concerning the stochastic parameters can lead to over harvesting and in turn to lower economic returns. When the harvests are taken sequentially by more than one fleet, additional information will benefit the first harvester while harming those who follow. [source]


    Effective primate conservation education: gaps and opportunities

    AMERICAN JOURNAL OF PRIMATOLOGY, Issue 5 2010
    Susan K. Jacobson
    Abstract Conservation education goals generally include influencing people's conservation awareness, attitudes, and behaviors. Effective programs can help foster sustainable behavior, improve public support for conservation, reduce vandalism and poaching in protected areas, improve compliance with conservation regulations, increase recreation carrying capacities, and influence policies and decisions that affect the environment. Primate conservation problems cut across many disciplines, and primate conservation education must likewise address crossdisciplinary issues. Conservation educators must incorporate both theoretical and practical knowledge and skills to develop effective programs, and the skill set must stretch beyond pedagogy. Expertize needed comes from the areas of planning, collaboration, psychology, entertainment, and evaluation. Integration of these elements can lead to greater program success. Am. J. Primatol. 72:414,419, 2010. © 2009 Wiley-Liss, Inc. [source]


    The Interplay between Climate Variability and Density Dependence in the Population Viability of Chinook Salmon

    CONSERVATION BIOLOGY, Issue 1 2006
    RICHARD W. ZABEL
    análisis de viabilidad poblacional; especies en peligro; Oncorhynchus tshawytscha Abstract:,The viability of populations is influenced by driving forces such as density dependence and climate variability, but most population viability analyses (PVAs) ignore these factors because of data limitations. Additionally, simplified PVAs produce limited measures of population viability such as annual population growth rate (,) or extinction risk. Here we developed a "mechanistic" PVA of threatened Chinook salmon (Oncorhynchus tshawytscha) in which, based on 40 years of detailed data, we related freshwater recruitment of juveniles to density of spawners, and third-year survival in the ocean to monthly indices of broad-scale ocean and climate conditions. Including climate variability in the model produced important effects: estimated population viability was very sensitive to assumptions of future climate conditions and the autocorrelation contained in the climate signal increased mean population abundance while increasing probability of quasi extinction. Because of the presence of density dependence in the model, however, we could not distinguish among alternative climate scenarios through mean , values, emphasizing the importance of considering multiple measures to elucidate population viability. Our sensitivity analyses demonstrated that the importance of particular parameters varied across models and depended on which viability measure was the response variable. The density-dependent parameter associated with freshwater recruitment was consistently the most important, regardless of viability measure, suggesting that increasing juvenile carrying capacity is important for recovery. Resumen:,La viabilidad de poblaciones esta influida por fuerzas conductoras como la denso dependencia y la variabilidad climática, pero la mayoría de los análisis de viabilidad poblacional (AVP) ignoran estos factores debido a limitaciones en la disponibilidad de datos. Adicionalmente, los AVP simplificados producen medidas limitadas de la viabilidad poblacional tales como la tasa anual de crecimiento poblacional (,) o el riesgo de extinción. Aquí desarrollamos un AVP "mecanicista" de Oncorhynchus tshawytscha en el que, con base en datos detallados de 40 años, relacionamos el reclutamiento de juveniles en agua dulce con la densidad de reproductores, y la supervivencia en el océano al tercer año con índices mensuales de condiciones oceánicas y climáticas a amplia escala. La inclusión de la variabilidad climática en el modelo produjo efectos importantes: la viabilidad poblacional estimada fue muy sensible a las suposiciones de condiciones climáticas futuras y la autocorrelación contenida en la señal climática aumentó la abundancia poblacional promedio al mismo tiempo que incrementó la probabilidad de cuasi extinción. Sin embargo, debido a la presencia de denso densidad en el modelo no pudimos distinguir entre escenarios climáticos alternativos a través de los valores promedio de ,, lo que enfatiza la importancia de considerar medidas múltiples para dilucidar la viabilidad poblacional. Nuestros análisis de sensibilidad demostraron que la importancia de parámetros particulares varió en los modelos y dependió de la medida de viabilidad utilizada como variable de respuesta. El parámetro de denso dependencia asociada con el reclutamiento en agua dulce consistentemente fue el más importante, independientemente de la medida de viabilidad, lo que sugiere que el incremento en la capacidad de carga de juveniles es importante para la recuperación. [source]


    African elephants: the effect of property rights and political stability

    CONTEMPORARY ECONOMIC POLICY, Issue 1 2000
    MA. McPherson
    African elephant populations have declined by more than 50% over the past 20 years. International outrage over the slaughter led to a worldwide ban on ivory sales beginning in 1989, despite the objections of many economists and scientists, and of several southern African countries that have established systems of property rights over elephants. Far from declining, elephant populations in many of these countries have increased to levels at or above the carrying capacity of the ecosystem. This article estimates the determinants of changes in elephant populations in 35 African countries over several time periods. The authors find that, controlling for other factors, countries with property rights systems of community wildlife programs have more rapid elephant population growth rates than do those countries that do not. Political instability and the absence of representative governments significantly lower elephant growth rates. [source]


    Sustainability quotients and the social footprint

    CORPORATE SOCIAL RESPONSIBILITY AND ENVIRONMENTAL MANAGEMENT, Issue 4 2008
    Mark W. McElroy
    Abstract We argue that most of what passes for mainstream reporting in corporate sustainability management fails to do precisely the one thing it purports to do , which is make it possible for organizations to measure and report on the sustainability of their operations. It fails because of the lack of what the Global Reporting Initiative calls sustainability context, a shortcoming from which it, too, suffers. We suggest that this missing context calls for a new notion of sustainability (the binary perspective), which can be conceptualized in the form of sustainability quotients. We provide specifications for such quotients in ecological and social contexts, and suggest that sustainability is best understood in terms of the impact organizations can have on the carrying capacity of non-financial capital, or what in the social case we call anthro capital. We conclude by introducing a quantitative quotients-based method for measuring and reporting on the social sustainability of an organization, the social footprint method. Copyright © 2007 John Wiley & Sons, Ltd and ERP Environment. [source]


    Mathematical and experimental insights into the development of the enteric nervous system and Hirschsprung's Disease

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2007
    Kerry A. Landman
    The vertebrate enteric nervous system is formed by a rostro-caudally directed invasion of the embryonic gastrointestinal mesenchyme by neural crest cells. Failure to complete this invasion results in the distal intestine lacking intrinsic neurons. This potentially fatal condition is called Hirschsprung's Disease. A mathematical model of cell invasion incorporating cell motility and proliferation of neural crest cells to a carrying capacity predicted invasion outcomes to imagined manipulations, and these manipulations were tested experimentally. Mathematical and experimental results agreed. The results show that the directional invasion is chiefly driven by neural crest cell proliferation. Moreover, this proliferation occurs in a small region at the wavefront of the invading population. These results provide an understanding of why many genes implicated in Hirschsprung's Disease influence neural crest population size. In addition, during in vivo development the underlying gut tissues are growing simultaneously as the neural crest cell invasion proceeds. The interactions between proliferation, motility and gut growth dictate whether or not complete colonization is successful. Mathematical modeling provides insights into the conditions required for complete colonization or a Hirschsprung's-like deficiency. Experimental evidence supports the hypotheses suggested by the modeling. [source]


    Dynamics of an introduced population of mouflon Ovis aries on the sub-Antarctic archipelago of Kerguelen

    ECOGRAPHY, Issue 3 2010
    Renaud Kaeuffer
    A commonly reported pattern in large herbivores is their propensity to irrupt and crash when colonizing new areas. However, the relative role of density-dependence, climate, and cohort effects on demographic rates in accounting for the irruptive dynamics of large herbivores remains unclear. Using a 37-yr time series of abundance in a mouflon Ovis aries population located on Haute Island, a sub-Antarctic island of Kerguelen, 1) we investigated if irruptive dynamics occurred and 2) we quantified the relative effects of density and climate on mouflon population dynamics. Being released in a new environment, we expected mouflon to show rapid growth and marked over-compensation. In support of this prediction, we found a two-phase dynamics, the first phase being characterised by an irruptive pattern best described by the , -Caughley model. Parameter estimates were rm=0.29±0.005(maximum growth rate), K=473±45 (carrying capacity) and S=2903±396 (surplus) mouflon. With a ,=3.18±0.69 our model also supported the hypothesis that density dependence is strongest at high density in large herbivores. The second phase was characterised by an unstable dynamics where growth rate was negatively affected by population abundance and winter precipitation. Climate, however, did not trigger population crashes and our model suggested that lagged density-dependence and over-grazing were the probable causes of mouflon irruptive dynamics. We compare our results with those of Soay sheep and discuss the possibility of a reversible alteration of the island carrying capacity after the initial over-grazing period. [source]


    Intraspecific variation in the strength of density dependence in aphid populations

    ECOLOGICAL ENTOMOLOGY, Issue 5 2004
    Anurag A. Agrawal
    Abstract., 1. Experimental evidence is presented for positive, negative, and no density dependence from 32 independent density manipulations of milkweed aphids (Aphis nerii) in laboratory and field experiments. This substantial variation in intraspecific density dependence is associated with temperature and host-plant species. 2. It is reported that as population growth rate increases, density dependence becomes more strongly negative, suggesting that the monotonic definition of density dependence used in many common population models is appropriate for these aphids, and that population growth rate and carrying capacity are not directly proportional. 3. For populations that conform to these assumptions, population growth rate may be widely applicable as a predictor of the strength of density dependence. [source]


    HOST GROWTH CONDITIONS INFLUENCE EXPERIMENTAL EVOLUTION OF LIFE HISTORY AND VIRULENCE OF A PARASITE WITH VERTICAL AND HORIZONTAL TRANSMISSION

    EVOLUTION, Issue 7 2010
    Hélène Magalon
    In parasites with mixed modes of transmission, ecological conditions may determine the relative importance of vertical and horizontal transmission for parasite fitness. This may lead to differential selection pressure on the efficiency of the two modes of transmission and on parasite virulence. In populations with high birth rates, increased opportunities for vertical transmission may select for higher vertical transmissibility and possibly lower virulence. We tested this idea in experimental populations of the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. Serial dilution produced constant host population growth and frequent vertical transmission. Consistent with predictions, evolved parasites from this "high-growth" treatment had higher fidelity of vertical transmission and lower virulence than parasites from host populations constantly kept near their carrying capacity ("low-growth treatment"). High-growth parasites also produced fewer, but more infectious horizontal transmission stages, suggesting the compensation of trade-offs between vertical and horizontal transmission components in this treatment. These results illustrate how environmentally driven changes in host demography can promote evolutionary divergence of parasite life history and transmission strategies. [source]


    Fracture analysis of strength undermatched Al-Alloy welds in edge cracked tensile panels using FITNET procedure

    FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 9 2008
    S. CICERO
    ABSTRACT This paper presents a methodology for the assessment of the remaining load carrying capacity of thin-walled components under tension containing highly strength undermatched welds and edge cracks. The analysis is based on the strength mismatch option of the fracture module, part of the newly developed European fitness-for-service (FFS) procedure FITNET. The mismatch option of the FITNET fracture module allows weld features such as weld tensile properties and weld geometry to be taken into account in the fracture analysis of cracked welded components. The methodology described was verified for centre cracked Al-alloy large tensile panels containing undermatched welds in Ref. [1] and hence the present work provides validation with experimental results of the single edge cracked (SEC) and double edge cracked (DEC) panels. The material used is an age-hardening aluminium alloy 6013 in T6 temper condition used in welded airframe components. The welds in the form of butt joints were produced using the CO2 laser beam welding process. The results show that by using the FITNET FFS methodology with an appropriate selection of the input parameters, safe acceptable predictions of the maximum load carrying capacity of the welded panels can be obtained. It should also be noted that one of the main difficulties that engineers encounter when applying mismatch analysis for first time is its apparent complexity. A step-by-step analysis is proposed here in order to provide guidance for this kind of assessments. [source]


    The enhancement of abalone stocks: lessons from Japanese case studies

    FISH AND FISHERIES, Issue 3 2008
    Katsuyuki Hamasaki
    Abstract The dramatic declines in abalone Haliotis spp. fishery production have been documented all over the world. Release of hatchery-reared juveniles into natural habitats has been considered as one measure to sustain and/or augment the current fishery production of abalone, as well as to restore collapsed abalone stocks. However, attempts at abalone release programmes have only been undertaken at experimental scales, except for Japan, where large-scale stock enhancement programmes for abalone have been undertaken since late 1960s. To evaluate the potential of stock enhancement for abalone, we analysed the release surveys of 13 case studies in Japan in terms of the overall recapture rate (number of recaptures through a lifetime/number of juveniles released), yield per release (YPR, yields from released individuals), the economic efficiency of releases (ratio of income from recaptured abalone to release cost) for each release year, and the contribution of hatchery releases to total catches for each fishing year. The average estimates for overall recapture rates (0.014,0.238) and YPR (3.1,60.3 g/individual) varied between locations and release years. The economic efficiency was estimated at 0.4,6.2. The released abalone contributed 6.9,83.5% to total catches. Hatchery releases could augment total production at some locations, but the success of release programmes would be limited by the carrying capacity at release areas, because density-dependent mortality occurred following releases in some cases. Throughout Japan, the annual catch of abalone has continuously declined from ,6500 t in 1970 to ,2000 t in the mid-1990s, despite the increase in the number of hatchery releases. Based on the estimates for YPR, the magnitude of the abalone releases on a national scale has not been sufficiently large to sustain the total production of Japanese abalone, which has primarily fluctuated according to the abundances of wild populations. Our results suggest that releases should be targeted at local populations in regions where stock enhancement is predicted to have the greatest chance of success, and the magnitude of releases should be considered carefully and determined for each region by taking the local carrying capacity into account. We also address the future prospects of abalone stock enhancement. [source]


    The enhancement of cod stocks

    FISH AND FISHERIES, Issue 2 2000
    T. Svåsand
    Atlantic cod have been a primary target for marine stock enhancement since the 1880s. In the early part of this period, hatched larvae were released in Norway, the USA and Canada. The last larval releases were conducted in Norway in 1971, and a century of cod larvae releases were halted without any clear evidence of benefit. Since the early 1980s, the focus has been on production of larger, more viable juvenile cod. Emphasis has been given to the design of tag,release programmes involving large-scale releases and ecosystem analysis in selected ecosystems. Most of this research has been carried out in Norway, where more than one million tagged juvenile cod have been released. Smaller stocking experiments have also been performed in Denmark, Sweden, the Faroe Islands and the USA. This paper reviews the major findings from these programmes. We include summaries and evaluations of rearing techniques for juvenile cod, methods of tagging and recapture, experimental fishing, migration, mortality and growth rates in the different habitats, genetic analysis, and ecosystem studies that have tried to describe the variation in the cod carrying capacity of selected release areas. Despite relatively large variation in environmental conditions, in cod production and in fishing mortality along the Norwegian coast, results indicate that, under the conditions experienced during the 1980s and 1990s, releases of juvenile cod did not significantly increase cod production and catches. The biological limitations and future prospects of Atlantic cod stock enhancement are addressed. [source]


    Carrying capacity and survival strategy for the Pacific bluefin tuna, Thunnus orientalis, in the Western Pacific

    FISHERIES OCEANOGRAPHY, Issue 2 2006
    YASUO MATSUKAWA
    Abstract The carrying capacity for the Pacific bluefin tuna at each life stage is estimated and its survival strategy is examined numerically, using a new method to define the hypothetical capacity, the standard population, and the search volumes that are necessary and are feasible for the tuna. The carrying capacity for the adult is estimated at 1,2 × 106 individuals, which corresponds with 5,10% of the hypothetical capacity and is comparable with the maximum levels of the southern and the Atlantic bluefin tuna populations. It is hypothesized semiquantitatively that the migration at each life stage and the remarkable decrement of growth at 120 days and about 40 cm occur as an evolutionary response to population excess over the carrying capacity. It is also hypothesized semiquantitatively that the early larvae have minimal food available in the Subtropical Water and develop the predatory morphology, high growth rate, and high mobility, however, at the expense of a high mortality as an evolutionary response to the tuna spawning in the Subtropical Water. This method may be an available tool to not only investigate the carrying capacity and survival strategy of a specific fish species, but also predict when and in how much abundance the fish species occurs in a specific area of its habitat. [source]


    Recruitment variability of resident brown trout in peripheral populations from southern Europe

    FRESHWATER BIOLOGY, Issue 12 2008
    GRACIELA G. NICOLA
    Summary 1. Population regulation was studied for seven consecutive years (1992,98) in five rivers at the periphery of the distribution of Salmo trutta, where the fish were living under environmental constraints quite different from those of the main distribution area. 2. Recruitment is naturally highly variable and the populations had been earlier classified as overexploited. Thus we expected that densities of young trout in most populations would be too low for density-dependent mortality to operate. We tested this by fitting the abundance of recruits to egg densities over seven consecutive years (stock,recruitment relationship), and used the results to judge whether exploitation should be restricted in the interests of conserving the populations. 3. The density of 0+ trout in early September, as well as the initial density of eggs and parents, varied greatly among localities and years. The data for all populations fitted the Ricker stock,recruitment model. The proportion of variance explained by the population curves varied between 32% and 51%. However, in most cases the observations were in the density-independent part of the stock,recruitment curve, where densities of the recruits increased proportionally with egg densities. 4. Our findings suggest that recruitment densities in most rivers and years were below the carrying capacity of the habitats. Although density-dependent mechanisms seemed to regulate fish abundance in some cases, environmental factors and harvesting appeared generally to preclude populations from reaching densities high enough for negative feedbacks to operate. The findings thus lend support to Haldane's (1956) second hypothesis that changes in population density are primarily due to density-independent factors in unfavourable areas and areas with low density due to exploitation. Exploitation should be reduced to allow natural selection to operate more effectively. [source]


    On the different nature of top-down and bottom-up effects in pelagic food webs

    FRESHWATER BIOLOGY, Issue 12 2002
    Z. Maciej Gliwicz
    SUMMARY 1.,Each individual planktonic plant or animal is exposed to the hazards of starvation and risk of predation, and each planktonic population is under the control of resource limitation from the bottom up (growth and reproduction) and by predation from the top down (mortality). While the bottom-up and top-down impacts are traditionally conceived as compatible with each other, field population-density data on two coexisting Daphnia species suggest that the nature of the two impacts is different. Rates of change, such as the rate of individual body growth, rate of reproduction, and each species' population growth rate, are controlled from the bottom up. State variables, such as biomass, individual body size and population density, are controlled from the top down and are fixed at a specific level regardless of the rate at which they are produced. 2.,According to the theory of functional responses, carnivorous and herbivorous predators react to prey density rather than to the rate at which prey are produced or reproduced. The predator's feeding rate (and thus the magnitude of its effect on prey density) should hence be regarded as a functional response to increasing resource concentration. 3.,The disparity between the bottom-up and top-down effects is also apparent in individual decision making, where a choice must be made between accepting the hazards of hunger and the risks of predation (lost calories versus loss of life). 4.,As long as top-down forces are effective, the disparity with bottom-up effects seems evident. In the absence of predation, however, all efforts of an individual become subordinate to the competition for resources. Biomass becomes limited from the bottom up as soon as the density of a superior competitor has increased to the carrying capacity of a given habitat. Such a shift in the importance of bottom-up control can be seen in zooplankton in habitats from which fish have been excluded. [source]


    High efficiency site-specific genetic engineering of the mosquito genome

    INSECT MOLECULAR BIOLOGY, Issue 2 2006
    D. D. Nimmo
    Abstract Current techniques for the genetic engineering of insect genomes utilize transposable genetic elements, which are inefficient, have limited carrying capacity and give rise to position effects and insertional mutagenesis. As an alternative, we investigated two site-specific integration mechanisms in the yellow fever mosquito, Aedes aegypti. One was a modified CRE/lox system from phage P1 and the other a viral integrase system from Streptomyces phage phi C31. The modified CRE/lox system consistently failed to produce stable germline transformants but the phi C31 system was highly successful, increasing integration efficiency by up to 7.9-fold. The ability to efficiently target transgenes to specific chromosomal locations and the potential to integrate very large transgenes has broad applicability to research on many medically and economically important species. [source]


    Relating juvenile spatial distribution to breeding patterns in anadromous salmonid populations

    JOURNAL OF ANIMAL ECOLOGY, Issue 2 2010
    Anders Foldvik
    Summary 1. Spatial within-population heterogeneity in density probably affects competition intensity and may have a fundamental role in shaping population dynamics and carrying capacity. This may be particularly relevant for organisms where limitations on juvenile mobility cause maternal choice of breeding locations to influence the spatial distribution of younger life stages. 2. In this study, we mapped redd locations and the resulting densities of juveniles the following year along the entire reach (9·2 km) of a river holding natural populations of anadromous salmonids (Atlantic salmon and brown trout). These data were used to quantify the spatial scale over which breeding influences juvenile densities, and hence becomes important for density-dependent processes. 3. Although the observed cumulative distributions indicated a relatively uniform distribution of breeding along the river, autocorrelation analyses identified spatial patchiness of both breeding and resulting juveniles on a local scale. Furthermore, cross-correlations suggested a close spatial relationship between distribution of redds and juveniles. 4. Using spatially explicit hockey-stick stock,recruitment functions, we found juvenile salmonid density to be mostly influenced by the amount of breeding upstream of a given location. This influence decreased rapidly within the first 75,150 m. Thus, female choice with regard to breeding location gave rise to a heterogeneous distribution of offspring on a spatial scale of almost two orders of magnitude finer than that of the whole population (9·2 km). 5. The results are consistent with smaller scale experimental studies of salmonids, and emphasize the role for maternal choice of breeding locations in causing substantial spatial heterogeneity in juvenile densities within natural populations. Due to effects of density heterogeneity on overall levels of competition, this adds another layer of complexity to the dynamics of salmonid populations even in populations where breeding appears to be relatively uniformly distributed through space, and potentially also for a range of other organisms where juvenile dispersal is constrained. [source]


    On being the right size: food-limited feedback on optimal body size

    JOURNAL OF ANIMAL ECOLOGY, Issue 4 2008
    Sinclair Anthony R.E
    An insular population of white-tailed deer Odocoileus virginianus introduced in 1896 to predator-free Anticosti Island, Quebec, has caused long-term changes in the plant community. Food quality declined as did body weight. Although different parameters of reproduction changed, overall reproductive rates remained similar, thus maintaining deer density and promoting further change in habitat. These results show (i) long-term feedbacks on carrying capacity, (ii) the mechanism for reduction of body mass, and (iii) the lack of strong reduction in reproductive rates to regulate the population at high density, a feature of Eutherians. They are relevant to mechanisms determining the evolution of vertebrate body sizes. [source]


    Resource variability, aggregation and direct density dependence in an open context: the local regulation of an African elephant population

    JOURNAL OF ANIMAL ECOLOGY, Issue 1 2008
    Simon Chamaillé-Jammes
    Summary 1An emerging perspective in the study of density dependence is the importance of the spatial and temporal heterogeneity of resources. Although this is well understood in temperate ungulates, few studies have been conducted in tropical environments where both food and water are limiting resources. 2We studied the regulation of one of the world's largest elephant populations in Hwange National Park, Zimbabwe. The study period started in 1986 when the population was released from culling. Using census data we investigated changes in elephant abundance with respect to rainfall and density across the entire park and across waterholes. 3The population more than doubled since culling stopped. The population increased continuously during the first 6 years, and then fluctuated widely at about 30 000 individuals. Immigration processes must have been involved in the increase of the population size. 4Population growth rates were negatively related to previous population density by a convex relationship, and negatively related to the ratio of previous population density on annual rainfall by a linear relationship. However, only this latter model (i.e. assuming a fluctuating carrying capacity related to annual rainfall) produced realistic dynamics. Overall, population decreased during dry years when the elephant density was high. 5During dry years there were fewer waterholes retaining water during the dry season and consequently elephant numbers at waterholes increased, while their aggregation level across waterholes decreased. On the long-run elephant numbers increased only at the less crowded waterholes. 6We suggest that the interaction between population size and the available foraging range determined by the number of active waterholes during the dry season controls the park population. 7Our results emphasize the need to understand how key-resource areas cause resource-based aggregation, which ultimately influences the strength of density dependence. More specifically, this study suggests that climate variability strongly affects local elephant population dynamics through changes in surface-water availability. Finally, as dispersal is likely to be an important driver of the dynamics of this population, our results support views that a metapopulation framework should be endorsed for elephant management in open contexts. [source]


    Predicting time-specific changes in demographic processes using remote-sensing data

    JOURNAL OF APPLIED ECOLOGY, Issue 2 2006
    HENRIK B. RASMUSSEN
    Summary 1Models of wildlife population dynamics are crucial for sustainable utilization and management strategies. Fluctuating ecological conditions are often key factors influencing both carrying capacity, mortality and reproductive rates in ungulates. To be reliable, demographic models should preferably rely on easily obtainable variables that are directly linked to the ecological processes regulating a population. 2We compared the explanatory power of rainfall, a commonly used proxy for variability in ecological conditions, with normalized differential vegetation index (NDVI), a remote-sensing index value that is a more direct measure of vegetation productivity, to predict time-specific conception rates of an elephant population in northern Kenya. Season-specific conception rates were correlated with both quality measures. However, generalized linear logistic models compared using Akaike's information criteria showed that a model based on the NDVI measure outperformed models based on rainfall measures. 3A predictive model based on coarse demographic data and the maximum seasonal NDVI value was able to trace the large variation in observed season-specific conception rates (Range 0,0·4), with a low median deviation from observed values of 0·07. 4By combining the model of season-specific conception rates with the average seasonal distribution of conception dates, the monthly number of conceptions (range 0,22) could be predicted within ±3 with 80% confidence. 5Synthesis and applications. The strong predictive power of the normalized differential vegetation index on time-specific variation in a demographic variable is likely to be generally applicable to resource-limited ungulate species occurring in ecologically variable ecosystems, and could potentially be a powerful factor in demographic population modelling. [source]


    The resilience of calcareous and mesotrophic grasslands following disturbance

    JOURNAL OF APPLIED ECOLOGY, Issue 3 2005
    RACHEL A. HIRST
    Summary 1Understanding habitat disturbance and recovery is vital for successful conservation management and restoration, particularly of subseral communities with high nature conservation interest and sites subject to unavoidable disturbance pressures, such as that arising from access and recreational activities. 2Grassland resilience was investigated on the Salisbury Plain Training Area (SPTA) in southern England, the largest of the UK military training areas. SPTA contains the greatest expanse of unimproved chalk grassland in north-west Europe, a habitat of particular nature conservation interest. 3Historical aerial photographs were used to identify 82 calcareous and mesotrophic grassland sites disturbed over a 50-year time period. Vegetation, soils and seed bank data were collected from each old disturbance site. Revegetation time periods following disturbance were compared, and habitat resilience following disturbance investigated using the succession of surface vegetation along the chronosequence, the combined changes of vegetation and soil chemistry, and finally vegetation and seed bank composition. 4The sampled calcareous grasslands were less resilient following disturbance than the mesotrophic grasslands, with slower colonization of bare ground and target species re-assembly. The mesotrophic grasslands typically took between 30 and 40 years to re-establish following disturbance, whereas calcareous grasslands took at least 50 years. 5Even after such long time periods, there remained subtle but significant differences between the vegetation composition of the disturbed and undisturbed swards. Perennial forb species, particularly hemicryptophytes, persisted at higher frequencies in swards disturbed 50 years ago than in undisturbed swards. 6Synthesis and applications. Prediction of habitat resilience following disturbance is dependent on which components of the system are investigated. However, data such as that presented here can help land managers understand how palimpsests of current habitat characteristics may have evolved, and how disturbance regimes may be managed in the future. It is likely that the resilience of grasslands such as those on SPTA may have been overestimated, and perceptions of habitat carrying capacity for disturbance events may require re-evaluation. [source]


    The joint effects of larval density and 14C-cypermethrin on the life history and population growth rate of the midge Chironomus riparius

    JOURNAL OF APPLIED ECOLOGY, Issue 6 2003
    Helen L. Hooper
    Summary 1Chemical effects on organisms are typically assessed using individual-level endpoints or sometimes population growth rate (PGR), but such measurements are generally made at low population densities. In contrast most natural populations are subject to density dependence and fluctuate around the environmental carrying capacity as a result of individual competition for resources. As ecotoxicology aims to make reliable population projections of chemical impacts in the field, an understanding of how high-density or resource-limited populations respond to environmental chemicals is essential. 2Our objective was to determine the joint effects of population density and chemical stress on the life history and PGR of an important ecotoxicological indicator species, Chironomus riparius, under controlled laboratory conditions. Populations were fed the same ration but initiated at different densities and exposed to a solvent control and three concentrations of 14C-cypermethrin in a sediment,water test system for 67 days at 20 ± 1 °C. 3Density had a negative effect on all the measured life-history traits, and PGR declined with increasing density in the controls. Exposure to 14C-cypermethrin had a direct negative effect on juvenile survival, presumably within the first 24 h because the chemical rapidly dissipated from the water column. Reductions in the initial larval densities resulted in an increase in the available resources for the survivors. Subsequently, exposed populations emerged sooner and started producing offspring earlier than the controls. 14C-cypermethrin had no effect on estimated fecundity and adult body weight but interacted with density to reduce the time to first emergence and first reproduction. As a result, PGR increased with cypermethrin concentration when populations were initiated at high densities. 4Synthesis and applications. The results showed that the effects of 14C-cypermethrin were buffered at high density, so that the joint effects of density and chemical stress on PGR were less than additive. Low levels of chemical stressors may increase carrying capacity by reducing juvenile competition for resources. More and perhaps fitter adults may be produced, similar to the effects of predators and culling; however, toxicant exposure may result in survivors that are less tolerant to changing conditions. If less than additive effects are typical in the field, standard regulatory tests carried out at low density may overestimate the effects of environmental chemicals. Further studies over a wide range of chemical stressors and organisms with contrasting life histories are needed to make general recommendations. [source]


    How environmental stress affects density dependence and carrying capacity in a marine copepod

    JOURNAL OF APPLIED ECOLOGY, Issue 3 2000
    Richard M. Sibly
    Summary 1.,Management of the effects of stress on populations , for instance in ecotoxicology , requires understanding of the effects of stressors on populations and communities. Attention to date has too rarely been directed to relevant ecological endpoints, such as carrying capacity and density dependence. Established procedures are instead based on measuring the Life Tables of individual organisms exposed to differing concentrations of a pollutant at low population density, but this approach does not take into account population effects that may occur through interactions between individuals. Here we introduce an approach that allows direct measurement of the effects of stressors on carrying capacity and density dependence. 2.,Using the marine copepod Tisbe battagliai Volkmann-Rocco, we report replicated experiments establishing the effects of 100 µg L,1 pentachlorophenol (PCP) in combination with varying diet and food concentrations. Population density was measured as population biomass in 10 mL volumes. Diet was either the alga Isochrysis galbana Parke (here designated ,poor diet') or a mix of two algal species (I. galbana and Rhodomonas reticulata Novarino: ,good diet'). Each was given at three food concentrations (520, 1300 and 3250 µgC L,1), selected on the basis that at low population density these cover the range between limited and maximal population growth. 3.,Carrying capacity increased linearly with food concentration. On the poor diet the increase was 1·2 ,g L,1 for each ,gC L,1 increase in food concentration. On the good diet the increase was 2·3 ,g L,1/,gC L,1 in the absence of PCP, and 1·9 ,g L,1/,gC L,1 with PCP. Maximum carrying capacity was in the region of 60,80 ,g per 10 mL volume. Population growth rate (pgr) decreased linearly with population biomass when the latter was plotted on a logarithmic scale. Increasing biomass reduced pgr by 1·70 week,1 for each unit increase in log10 biomass. Increasing food concentration and improving diet both increased pgr, but did not affect the slope of the density-dependent relationship. Presence or absence of PCP had no effect except that at some higher food concentrations non-PCP populations initially increased faster than PCP populations, and at high concentration on the good diet the effect of density-dependence was decreased in PCP populations. 4.,The results show that a stressor's effects at high population density may differ from its effects at low density, and emphasizes the importance of finding new protocols, such as those introduced here, with which to study the joint effects of a stressor and population density. Managers and researchers of threatened species, harvested species and pest species need to know the joint effects of stressors and population density, in order to be able to predict the effects of stressors on carrying capacity and on the course of recovery from environmental perturbations. [source]


    The irreversible cattle-driven transformation of a seasonally flooded Australian savanna

    JOURNAL OF BIOGEOGRAPHY, Issue 5 2003
    Ben R. Sharp
    Abstract Aim ,Anecdotal historical and photographic evidence suggests that woody vegetation is increasing dramatically in some northern Australian savanna habitats. Vegetation change in savannas has important implications for pastoral land-use, conservation management, and landscape-scale carbon storage, and informs theoretical debates about ecosystem function. This study seeks to determine the nature, extent and cause(s) of woody vegetation change in a seasonally flooded alluvial savanna habitat. Location ,The study area is located within the seasonally inundated alluvial zone of the tidal portion of the Victoria River, Northern Territory, Australia. The study area has been grazed by domestic stock since c. 1900, prior to which the area was inhabited and more likely regularly burnt by Aboriginal people for thousands of years. Methods ,Digital georeferenced aerial photographic coverages were used to examine and quantify woody vegetation change between 1948 and 1993. Transect surveys of woody and herbaceous vegetation were carried out to ground-truth air-photo results and determine the nature and causes of observed vegetation changes. Results ,There has been a dramatic increase in woody vegetation cover throughout the study area. Vegetation change patterns are roughly uniform across the full range of edaphic habitat variation and are unrelated to the depositional age of fluvial sediments. Two woody species, Eucalyptus microtheca and Excoecaria parvifolia, are predominantly responsible for observed increases. Demographic analyses reveal that woody invasions have been episodic and indicate that in most locations peak woody species establishment occurred in the mid-1970s. Grasses are almost absent in a majority of habitats within the study area. Instead, large areas are covered by scalded soil, dense invasive weed populations, and unpalatable forbs and sedges. What grasses do occur are predominantly of very low value for grazing. The condition of the herbaceous layer renders most of the study area almost completely non-flammable; what fires do burn are small and of low intensity. Main conclusions ,Multiple working hypotheses explaining observed patterns of woody vegetation increase were considered and rejected in turn. The only hypothesis consistent with the evidence is as follows: (1) observed changes are a direct consequence of extreme overgrazing by cattle, most likely when stocking rates peaked in the mid-1970s; (2) prolonged heavy grazing effected the complete transformation of much of the herbaceous vegetation to a new state that is not flammable; and (3) in the absence of regular fire mortality, woody vegetation increased rapidly. The relatively treeless system that existed in 1948 was apparently stable and resilient to moderate grazing levels, and perhaps also to episodic heavy grazing events. However, grazing intensity in excess of a sustainable threshold has forced a transition that is irreversible in the foreseeable future. Stable-state transitions such as this one inform debates at the heart of ecological theory, such as the nature of stability, resilience, equilibrium and carrying capacity in dynamic savanna ecosystems. [source]


    Modelling space use and dispersal of mammals in real landscapes: a tool for conservation

    JOURNAL OF BIOGEOGRAPHY, Issue 4 2003
    David W. Macdonald
    Abstract Aim To explore the usefulness of Spatially Explicit Population Models (SEPMs), incorporating dispersal, as tools for animal conservation, as illustrated by the contrasting cases of four British mammals. Methods For each of the four species (American mink, Mustela vison, pine marten, Martes martes, dormouse, Muscardinus avellanarius and water vole, Arvicola terrestris) a spatial dynamics model was developed based on an integrated geographical information system (GIS) population model that linked space use to the incidence of the species. Each model had, first, a GIS, which stored environmental, habitat and animal population information, and secondly, an individual-based population dynamics module, which simulated home range formation, individual life histories and dispersal within the GIS-held landscape. Results The four models illustrated different interactions between species life-history variables and the landscape, particularly with respect to dispersal. As water voles and dormice occupy home ranges that are small relative to blocks of their habitat, they were most effectively modelled in terms of the dynamics of local populations within habitat blocks but linked by dispersal. In contrast, because the home ranges of American mink and pine marten are large relative to blocks of habitat, they were best modelled as individuals moving through a landscape of more or less useful patches of habitat. For the water vole, the most significant predictors of population size were the carrying capacity of each habitat and the annual number of litters. For the dormouse, the likelihood of catastrophe and the upper limit to dispersal movement were the key variables determining persistence. Adult mortality and home-range size were the only significant partial correlates of total population size for the American mink. Adult mortality was also a significant correlate of total population size in the pine marten, as were litter size and juvenile mortality. In neither the marten nor the mink was dispersal distance a significant factor in determining their persistence in the landscape. Main conclusions At a landscape scale it is difficult to measure animal distributions directly and yet conservation planning often necessitates knowledge of where, and in what numbers, animals are found, and how their distributions will be affected by interventions. SEPMs offer a useful tool for predicting this, and for refining conservation plans before irreversible decisions are taken in practice. [source]