| |||
Carrageenan Gel (carrageenan + gel)
Selected AbstractsCovalent immobilization of ,-galactosidase on carrageenan coated with chitosanJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2009Magdy M.M. Elnashar Abstract ,-Galactosidase was covalently immobilized to carrageenan coated with chitosan for the hydrolysis of lactose. The chitosan-carrageenan polyelectrolyte interaction was found to be dependent on the chitosan pH. At pH 4, the chitosan reached its maximum binding of 28.5% (w/w) where the chitosan surface density was 4.8 mg chitosan/cm2 g of carrageenan gel disks, using Muzzarelli method. Glutaraldehyde was used as a mediator to incorporate new functionality, aldehydic carbonyl group, to the bio-polymers for covalent attachment of ,-galactosidase. The enzyme was covalently immobilized to the biopolymer at a concentration of 2.73 mg protein per g of wet gel. FTIR proved the incorporation of the aldehydic carbonyl group to the carrageenan coated with chitosan at 1720 cm,1. The optimum time for enzyme immobilization was found to be 16 h, after which a plateau was reached. The enzyme loading increased from 2.65 U/g (control gel) to 10.92 U/g gel using the covalent technique. The gel's modification has shown to improve the carrageenan gel thermal stability as well as the immobilized enzyme. For example, the carrageenan gel treated with chitosan showed an outstanding thermal stability at 95°C compared with 35°C for the untreated carrageenan gel. Similarly, the immobilization process shifted the enzyme's optimum temperature from 50°C for the free enzyme towards a wider temperature range 45,55 °C indicating that the enzyme structure is strengthened by immobilization. In brief, the newly developed immobilization method is simple; the carrier is cheap, yet effective and can be used for the immobilization of other enzymes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] OSCILLATING VANE GEOMETRY FOR SOFT SOLID GELS AND FOAMSJOURNAL OF TEXTURE STUDIES, Issue 6 2002C. SERVAIS ABSTRACT Several relationships between the torque and the stress exist for the vane geometry, but only a few equations have been proposed for the relationship between angular displacement and strain. In this study, an expression based on the infinite gap approximation for concentric cylinders is used and well-defined reference data are compared to oscillating vane data to validate the assumptions used. Gelatin gels are used for their property to stick to the wall and carrageenan gels are used to show that wall slip does not occur with oscillating vanes in serrated cup geometries. Shaving foams are used as a model low density, time and shear stable foam, which resists irreversible damage when loaded between serrated parallel plates. Results show that the assumptions used for the determination of stress and strain with the vane provide material viscoelastic properties that are not significantly different from reference values as obtained with concentric cylinders and parallel plates. [source] TEXTURE STABILITY OF HYDROGEL COMPLEX CONTAINING CURDLAN GUM OVER MULTIPLE FREEZE,THAW CYCLESJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 1 2009PATRICK D. WILLIAMS ABSTRACT The texture stability of hydrogel complexes containing curdlan gum over multiple freeze,thaw cycles (FTCs) was investigated. The hydrogels formed by curdlan and xanthan gum, locust bean gum, carrageenan or guar gum at various combinations were stored at 4C for 24 h before subjected to five FTCs alternating between,16 (18 h) and 25C (6 h). Xanthan/curdlan hydrogels showed the highest freeze,thaw stability in terms of syneresis, heat stability and adhesiveness. The viscosity of xanthan/curdlan combination was the lowest among all samples studied yet the most stable over the five FTCs, whereas significant changes were observed with locust bean/curdlan hydrogels. The guar/curdlan combination before freeze,thaw treatments exhibited predominant elasticity; however, as the cycles progressed the elasticity decreased. The most stable gel strength was achieved when curdlan was combined with guar or xanthan at 2% (w/v) total concentration, while carrageenan/curdlan gels were the least stable. PRACTICAL APPLICATIONS Texture instability remains the most significant challenge for frozen food products, especially with inevitable post-production temperature fluctuations. Loss of moisture and changes in textural attributes often results in significant reduction of product quality. Precise control of hydrogel complexes that provide texture stabilization over multiple freeze,thaw cycles will enhance the quality of existing products while enabling the development of new ones. [source] |