Absorptive Cells (absorptive + cell)

Distribution by Scientific Domains


Selected Abstracts


Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: In vitro/In vivo case studies

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2007
Panayiotis P. Constantinides
Abstract The intestinal efflux pump, P-glycoprotein (P-gp), located in the apical membranes of intestinal absorptive cells, can reduce the bioavailability of a wide range of drugs which are substrates for this membrane transporter. In addition to anticancer and anti-HIV drugs, NCEs for other disease indications are P-gp substrates and there is considerable interest in inhibiting P-gp and thus increasing the bioavailability of these molecules. In this review article, an overview of P-gp and its role in drug transport and absorption will be presented first and then formulation strategies to effectively inhibit P-gp will be discussed and compared. These strategies independently and in combination, are: (a) coadministration of another P-gp substrate/specific inhibitor, and (b) incorporation of a nonspecific lipid and/or polymer excipient in the formulation. The first approach, although very effective in inhibiting P-gp, utilizes a second active compound in the formulation and thus imposes regulatory constraints and long development timelines on such combination products. Excipient inhibitors appear to have minimal nonspecific pharmacological activity and thus potential side effects of specific active compound inhibitors can be avoided. Case studies will be presented where specific active compounds, surfactants, polymers, and formulations incorporating these molecules are shown to significantly improve the intestinal absorption of poorly soluble and absorbed drugs as a result of P-gp inhibition and enhanced drug transport in vitro. ©2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:235,248, 2007 [source]


Ileal Uptake of Polyalkylcyanoacrylate Nanocapsules in the Rat

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2000
CHRISTIANE DAMGÉ
The ileal uptake of polyalkylcyanoacrylate nanocapsules (less than 300 nm in diameter) has been investigated in the rat. Iodised oil (Lipiodol) was used as the tracer for X-ray microprobe analysis in scanning electron microscopy. Lipiodol nanocapsules, or an emulsion of Lipiodol, were administered in the lumen of an isolated ileal loop of rat. Lipiodol nanocapsules improved the absorption of the tracer as indicated by increased concentrations of iodine in the mesenteric blood (+27%, P < 0.01, compared with Lipiodol emulsion). Intestinal biopsies were taken at different time points and the samples underwent cryofixation and freeze-drying. The nanocapsules were characterized by their strong iodine emission, and electron microscopy of the biopsy samples revealed nanocapsules in the intraluminal mucus of the non-follicular epithelium, then in the intercellular spaces between enterocytes, and finally the nanocapsules were found within intravillus capillaries. However, nanocapsules were most abundant in the Peyer's patches, where the intestinal epithelium had been crossed by way of the specialized epithelial cells, designated membranous cells, or M cells, and their adjacent absorptive cells. These observations were confirmed quantitatively by measuring iodine concentrations in the various tissue compartments. Ten minutes after the intraluminal administration of Lipiodol nanocapsules, the emission of iodine peaked in the mucus (+77%, P < 0.01), in M cells (+366%, P < 0.001), in enterocytes adjacent to M cells (+70%, P < 0.05) and in lymph vessels (+59%, P < 0.05). Polyalkylcyanoacrylate nanocapsules were able to pass through the ileal mucosa of the rat via a paracellular pathway in the non-follicular epithelium, and most predominantly, via M cells and adjacent enterocytes in Peyer's patches. [source]


Morphologic and morphometric analyses of acetic acid-induced colitis in rats after treatment with enemas from Myracrodruon urundeuva Fr. All. (Aroeira do Sertão)

PHYTOTHERAPY RESEARCH, Issue 3 2002
Lusmar Veras Rodrigues
Abstract The present work showed the effects of Myracrodruon urundeuva Fr. All., popularly known as ,aroeira' (AE), in the form of enemas prepared from the stem bark, on several morphologic and morphometric parameters after acetic acid-induced colitis in rats. Enemas from 5-ASA were used as standard while the vehicle, carboxymethylcellulose, was used as a control. The results of the morphological evaluation showed that on day 1 acetic acid produced significantly more necrosis in the groups treated with AE (10% and 20%) or 5-ASA than the controls. However, on day 60, there were more caliciform and absorptive cells in the treated groups compared with the controls. A significantly higher number of eosinophil and mononuclear cells and also collagen deposition in the controls compared with the treated groups were observed on day 60. However, a higher number of polymorphonuclear cells was detected on day 60 only in the AE treated group but not in the 5-ASA group. These data indicate that animals treated with AE or 5-ASA showed complete epithelial tissue regeneration, while in the controls chronic inflammatory exudate persisted and tissue regeneration occurred through fibrosis. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Role of villus microcirculation in intestinal absorption of glucose: coupling of epithelial with endothelial transport

THE JOURNAL OF PHYSIOLOGY, Issue 2 2003
J. R. Pappenheimer
Capillaries in jejunal villi can absorb nutrients at rates several hundred times greater (per gram tissue) than capillaries in other tissues, including contracting skeletal muscle and brain. We here present an integrative hypothesis to account for these exceptionally large trans-endothelial fluxes and their relation to epithelial transport. Equations are developed for estimating concentration gradients of glucose across villus capillary walls, along paracellular channels and across subjunctional lateral membranes of absorptive cells. High concentrations of glucose discharged across lateral membranes to subjunctional intercellular spaces are delivered to abluminal surfaces of villus capillaries by convection-diffusion in intercellular channels without significant loss of concentration. Post-junctional paracellular transport thus provides the series link between epithelial and endothelial transport and makes possible the large trans-endothelial concentration gradients required for absorption to blood. Our analysis demonstrates that increases of villus capillary blood flow and permeability-surface area product (PS) are essential components of absorptive mechanisms: epithelial transport of normal digestive loads could not be sustained without concomitant increases in capillary blood flow and PS. The low rates of intestinal absorption found in anaesthetised animals may be attributed to inhibition of normal villus microvascular responses to epithelial transport. [source]