Absorption Refrigeration (absorption + refrigeration)

Distribution by Scientific Domains


Selected Abstracts


Integration of Solar Energy into Absorption Refrigerators and Industrial Processes

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 9 2010
E. A. Tora
Abstract Absorption refrigeration is gaining increasing attention in industrial facilities to use process heat for partially or completely driving a cooling cycle. This paper introduces a systematic approach to the design of absorption refrigeration systems for industrial processes. Three sources of energy are considered to drive absorption refrigerators: excess process heat, solar energy, and fossil fuels. To handle the dynamic nature of solar energy, hot water tanks are used for energy storage and dispatch. Thermal pinch analysis is performed to determine the amount of available excess heat and the required refrigeration duty. Next, a multiperiod optimization formulation is developed for the entire system. The procedure determines the optimal mix of energy forms (solar versus fossil) and the dynamic operation of the system. Three case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. [source]


Experimental research of boiling heat transfer of smooth and screwed tube

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 2 2007
Maode Li
Abstract In this paper, based on the analog theory of heat transfer research, we performed an analog experiment on boiling heat transfer in smooth tube and screwed tubes. These are widely used in the high pressure generator of lithium bromide absorption refrigeration. From the experimental research, we obtained a series of results on the boiling heat transfer of a single smooth tube and three screwed tubes. The working condition is near the zone of bubble boiling and the overheat wall temperature ranges from 2,7 C, with a fluid medium of pure water and salt water solution. These results agreed well with the known results, and are significant for the practical design and application of a high pressure generator of lithium bromide absorption for refrigeration. 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(2): 74,84, 2007; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/htj.20145 [source]


Novel pervaporation technology using absorption refrigeration for vapor removal

AICHE JOURNAL, Issue 11 2002
Alaa Fahmy
A novel process configuration for pervaporation and vapor permeation realizes the permeation driving force by absorbing the permeate vapor into a suitable solution with a very low vapor pressure. Although the suggested process design lacks an experimental demonstration, by using two well-established technologies,the separation by pervaporation and the absorption refrigeration,it can achieve technical and economic advantages over the conventional condensation technology. Vacuum pressures as low as 8 mbar can be obtained at ambient temperatures without refrigeration, as well as low vacuum ranges that are not possible by condensation without freezing. Process simulations and feasibility investigations for the suggested process are discussed. [source]