| |||
Cardiac Repolarization (cardiac + repolarization)
Selected AbstractsElectrophysiological Effects of the Anti-Cancer Drug Lapatinib on Cardiac RepolarizationBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2010Hyang-Ae Lee Although lapatinib is associated with a risk of QT prolongation, the effects of the drug on cellular cardiac electrical properties and on action potential duration (APD) have not been studied. To evaluate the potential effects of lapatinib on cardiac repolarization, we investigated its electrophysiological effects using a whole-cell patch,clamp technique in transiently transfected HEK293 cells expressing human ether-à-go-go (hERG; to examine the rapidly activating delayed rectifier K+ current, IKr), KCNQ1/KCNE1 (to examine the slowly activating delayed rectifier K+ current, IKs), KCNJ2 (to examine the inwardly rectifying K+ current, IK1), or SCN5A (to examine the inward Na+ current, INa) and in rat cardiac myocytes (to examine the inward Ca2+ current, ICa). We also examined its effects on the APD at 90% (APD90) in isolated rabbit Purkinje fibres. In ion channel studies, lapatinib inhibited the hERG current in a concentration-dependent manner, with a half-maximum inhibition concentration (IC50) of 0.8 ± 0.09 ,m. In contrast, at concentrations up to 3 ,m, lapatinib did not significantly reduce the INa, IK1 or ICa amplitudes; at 3 ,m, it did slightly inhibit the IKs amplitude (by 19.4 ± 4.7%; p < 0.05). At 5 ,m, lapatinib induced prolongation of APD90 by 16.1% (p < 0.05). These results suggest that the APD90 -prolonging effect of lapatinib on rabbit Purkinje fibres is primarily a result of inhibition of the hERG current and IKs, but not INa, IK1 or ICa. [source] Effects of adrenaline and potassium on QTc interval and QT dispersion in manEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2 2003S. Lee Abstract Background Hypoglycaemia alters cardiac repolarization acutely, with increases in rate-corrected QT (QTc) interval and QT dispersion (QTd) on the electrocardiogram (ECG); such changes are related to the counterregulatory sympatho-adrenal response. Adrenaline produces both QTc lengthening and a fall in plasma potassium (K+) when infused into healthy volunteers. Hypokalaemia prolongs cardiac repolarization independently however, and therefore our aim was to determine whether adrenaline-induced repolarization changes are mediated directly or through lowered plasma K+. Materials and methods Ten healthy males were studied on two occasions. At both visits they received similar l- adrenaline infusions but on one occasion potassium was also administered; infusion rates were adjusted to maintain circulating K+ at baseline. The QTc interval, QTd, peripheral physiological responses and plasma adrenaline and potassium concentrations were measured during both visits. Results The QTc interval and QTd increased both with and without potassium clamping. Without K+ replacement, mean (SE) QTc lengthened from 378 (5) ms to a final maximum value of 433 (10) ms, and QTd increased from 36 (5) ms to 69 (8) ms (both P < 0·001). During K+ replacement, QTc duration at baseline and study end was 385 (7) ms and 423 (11) ms, respectively (P < 0·001), and QTd 38 was (4) ms and 63 (5) ms (P = 0·001). Conclusions These data suggest that disturbed cardiac repolarization as a result of increases in circulating adrenaline occurs independently of extracellular potassium. A direct effect of adrenaline upon the myocardium appears the most likely mechanism. [source] Evidences of the gender-related differences in cardiac repolarization and the underlying mechanisms in different animal species and humanFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 1 2006Jianhua Cheng Abstract Clinical and experimental studies have shown that gender differences exist in cardiac repolarization in various animal species and human, as is evidenced by significantly longer QT, JT intervals and action potential duration in females than in males due to a reduced repolarization reserve in females. The latter is shown by the relatively greater increase in ventricular repolarization and higher incidence of torsades de pointes (TdP) in preparations from females by drugs blocking repolarizing K+ currents. These results can be modulated by gonadectomy, suggesting that gonadal steroids are important determinants of gender difference in repolarization. In human subjects, QT and JT intervals are longer in women, whereas QT dispersion and Tp-e interval (the interval from the peak to the end of T wave) are longer in men. At slow heart rates greater prolongation in QT and increase in transmural repolarization heterogeneity (i.e. increase in Tp-e) may predispose to TdP tachycardias in women. In healthy postmenopausal women, hormone replacement therapy with estrogen alone usually produced a prolongation of QT interval, while estrogen plus progesterone had no significant effects on QT interval but reduced QT dispersion. Along with these, there are still conflicting data reported. Further work is needed before the elucidation of the basis of gender differences in ventricular repolarization. [source] Modelling and imaging cardiac repolarization abnormalitiesJOURNAL OF INTERNAL MEDICINE, Issue 1 2006Y. RUDY Abstract. Repolarization abnormalities, including those induced by the congenital or acquired long QT (LQT) syndrome, provide a substrate for life-threatening cardiac arrhythmias. In this article, we use computational biology to link HERG mutations mechanistically to the resulting abnormalities of the whole-cell action potential. We study how the kinetic properties of IKs (the slow delayed rectifier) that are conferred by molecular subunit interactions, facilitate its role in repolarization and ,repolarization reserve'. A new noninvasive imaging modality (electrocardiographic imaging) is shown to image cardiac repolarization on the epicardial surface, suggesting its possible role in risk stratification, diagnosis and treatment of LQT syndrome. [source] Cyamemazine metabolites: effects on human cardiac ion channels in-vitro and on the QTc interval in guinea pigsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2008William Crumb Monodesmethyl cyamemazine and cyamemazine sulfoxide, the two main metabolites of the antipsychotic and anxiolytic phenothiazine cyamemazine, were investigated for their effects on the human ether-à-go-go related gene (hERG) channel expressed in HEK 293 cells and on native INa, ICa, Ito, Isus or IK1 of human atrial myocytes. Additionally, cyamemazine metabolites were compared with terfenadine for their effects on the QT interval in anaesthetized guinea pigs. Monodesmethyl cyamemazine and cyamemazine sulfoxide reduced hERG current amplitude, with IC50 values of 0.70 and 1.53 ,M, respectively. By contrast, at a concentration of 1 ,M, cyamemazine metabolites failed to significantly affect INa, Ito, Isus or IK1 current amplitudes. Cyamemazine sulfoxide had no effect on ICa at 1 ,M, while at this concentration, monodesmethyl cyamemazine only slightly (17%), albeit significantly, inhibited ICa current. Finally, cyamemazine metabolites (5 mg kg,1 i.v.) were unable to significantly prolong QTc values in the guinea pig. Conversely, terfenadine (5 mg kg,1 i.v.) significantly increased QTc values. In conclusion, cyamemazine metabolite concentrations required to inhibit hERG current substantially exceed those necessary to achieve therapeutic activity of the parent compound in humans. Moreover, cyamemazine metabolites, in contrast to terfenadine, do not delay cardiac repolarization in the anaesthetized guinea pig. These non-clinical findings explain the excellent cardiac safety records of cyamemazine during its 30 years of extensive therapeutic use. [source] Correction for QT/RR Hysteresis in the Assessment of Drug-Induced QTc Changes,Cardiac Safety of GadobutrolANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 3 2009M.D., Marek Malik Ph.D. Background: The so-called thorough QT/QTc (TQT) studies required for every new pharmaceutical compound are negative if upper single-sided 95% confidence interval (CI) of placebo and baseline corrected QTc prolongation is <10 ms. This tight requirement has many methodological implications. If the investigated drug has a fast action and ECGs cannot be obtained at stable heart rates, QT/RR hysteresis correction is needed. Methods: This was used in a TQT study of gadobutrol. The TQT study was a randomized double-blind five-times crossover study of three doses of gadobutrol (0.1, 0.3, and 0.5 mmol/kg) that was placebo and positive effect controlled (moxifloxacin 400 mg). The study enrolled 50 healthy subjects with data of all periods. QT/RR hysteresis was assessed from prestudy exercise test ECGs. Among others, comparisons were made between population heart rate correction without hysteresis considerations and combined population heart rate and hysteresis correction. Results: The highest heart rate increase (placebo and baseline controlled) of 13.1 beats per minute (90% CI 9.9,16.4) occurred 1 minute after the administration of the highest dose of gadobutrol. Without hysteresis consideration, the highest ,,QTc were 9.91 ms (90% CI 8.01,11.81) while with hysteresis correction, these values were 7.62 ms (90% CI 6.37,8.87), thus turning a marginally positive TQT study into a negative finding. Conclusion: Hence, omitting hysteresis correction from episodes of fast heart rate changes may lead to incorrect conclusions. Despite substantial rate acceleration, accurate hysteresis correction confirms that gadobutrol does not have any effects on cardiac repolarization that would be within the limits of regulatory relevance. [source] Slow Delayed Rectifier Potassium Current (IKs) and the Repolarization ReserveANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 1 2007Norbert Jost Ph.D. The aim of this review is to present the properties of the slow component of the delayed rectifier potassium current (IKs) in the human ventricle. The review gives a detailed description of the physiology, molecular biology and pharmacology of the IKs current, including kinetic properties, genetic structures, agonists and antagonists. The authors also present the role of the IKs current in the human cardiac repolarization focusing on several pathophysiological situations, such as the LQT syndrome and the Torsade de Pointes arrhythmia. [source] Magnitude of Error Introduced by Application of Heart Rate Correction Formulas to the Canine QT IntervalANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 4 2006Andrew King B.V.M.S. Background: Accurate detection of drug-induced QT interval changes is often confounded by concurrent heart rate changes. Application of heart rate correction formulas has been the traditional approach to account for heart rate,induced QT interval changes, and thereby identify the direct effect of the test article on cardiac repolarization. Despite numerous recent studies identifying the imprecision of these formulas they continue to be applied. Methods: Using a chronic atrioventricular dissociated His-paced canine model, heart rate correction methods were evaluated for their ability to generate a corrected QT interval independent of original heart rate. Additionally, His bundle pacing at a heart rate of 60 beats/min allowed calculation of the magnitude of error introduced by application of heart rate correction formulas. Results: Of the fixed parameter heart rate correction formulas, only Van de Water was able to predict corrected QT values independent of the original heart rate. The magnitude of error discovered by application of heart rate correction formulas varied, but in many cases was very large. Bazett's formula was associated with a mean overcorrection of 67.9 ms; Fridericia's 28.7 ms. Van de Water was the best fixed parameter formula with a mean error of 10.8 ms. As expected, group and individual corrections derived from linear regression of the HR-QT data offered improvement over the traditional formulas. Both were able to predict QTc values independent of the heart rate. However, errors of the magnitude of 10 and 6 ms, respectively, were still introduced. Conclusion: Van de Water and linear regression correction methods were superior to others in this study, but all methods generated QTc errors equal to or much greater than the magnitude of interest for drug safety evaluation. [source] Comparing Methods of Measurement for Detecting Drug-Induced Changes in the QT Interval: Implications for Thoroughly Conducted ECG StudiesANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2 2004Nkechi E. Azie M.D. Background:,The aim of this study was to compare the reproducibility and sensitivity of four commonly used methods for QT interval assessment when applied to ECG data obtained after infusion of ibutilide. Methods:,Four methods were compared: (1) 12-lead simultaneous ECG (12-SIM), (2) lead II ECG (LEAD II), both measured on a digitizing board, (3) 3-LEAD ECG using a manual tangential method, and (4) a computer-based, proprietary algorithm, 12SLÔ ECG Analysis software (AUT). QT intervals were measured in 10 healthy volunteers at multiple time points during 24 hours at baseline and after single intravenous doses of ibutilide 0.25 and 0.5 mg. Changes in QT interval from baseline were calculated and compared across ECG methods, using Bland,Altman plots. Variability was studied using a mixed linear model. Results:,Baseline QT values differed between methods (range 376,395 ms), mainly based on the number of leads incorporated into the measurement, with LEAD II and 3-LEAD providing the shortest intervals. The 3-LEAD generated the largest QT change from baseline, whereas LEAD II and 12-SIM generated essentially identical result within narrow limits of agreement (0.4 ms mean difference, 95% confidence interval ± 20.5 ms). Variability with AUT (standard deviation 15.8 ms for within-subject values) was clearly larger than with 3-LEAD, LEAD II, and 12-SIM (9.6, 10.0, and 11.3 ms). Conclusion:,This study demonstrated significant differences among four commonly used methods for QT interval measurement after pharmacological prolongation of cardiac repolarization. Observed large differences in variability of measurements will have a substantial impact on the sample size required to detect QT prolongation in the range that is currently advised in regulatory guidance. [source] Electrophysiological Effects of the Anti-Cancer Drug Lapatinib on Cardiac RepolarizationBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2010Hyang-Ae Lee Although lapatinib is associated with a risk of QT prolongation, the effects of the drug on cellular cardiac electrical properties and on action potential duration (APD) have not been studied. To evaluate the potential effects of lapatinib on cardiac repolarization, we investigated its electrophysiological effects using a whole-cell patch,clamp technique in transiently transfected HEK293 cells expressing human ether-à-go-go (hERG; to examine the rapidly activating delayed rectifier K+ current, IKr), KCNQ1/KCNE1 (to examine the slowly activating delayed rectifier K+ current, IKs), KCNJ2 (to examine the inwardly rectifying K+ current, IK1), or SCN5A (to examine the inward Na+ current, INa) and in rat cardiac myocytes (to examine the inward Ca2+ current, ICa). We also examined its effects on the APD at 90% (APD90) in isolated rabbit Purkinje fibres. In ion channel studies, lapatinib inhibited the hERG current in a concentration-dependent manner, with a half-maximum inhibition concentration (IC50) of 0.8 ± 0.09 ,m. In contrast, at concentrations up to 3 ,m, lapatinib did not significantly reduce the INa, IK1 or ICa amplitudes; at 3 ,m, it did slightly inhibit the IKs amplitude (by 19.4 ± 4.7%; p < 0.05). At 5 ,m, lapatinib induced prolongation of APD90 by 16.1% (p < 0.05). These results suggest that the APD90 -prolonging effect of lapatinib on rabbit Purkinje fibres is primarily a result of inhibition of the hERG current and IKs, but not INa, IK1 or ICa. [source] Proarrhythmic potential of halofantrine, terfenadine and clofilium in a modified in vivo model of torsade de pointesBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2002Andrew J Batey This study was designed to compare the proarrhythmic activity of the antimalarial drug, halofantrine and the antihistamine, terfenadine, with that of clofilium a K+ channel blocking drug that can induce torsade de pointes. Experiments were performed in pentobarbitone-anaesthetized, open-chest rabbits. Each rabbit received intermittent, rising dose i.v. infusions of the ,-adrenoceptor agonist phenylephrine. During these infusions rabbits also received increasing i.v. doses of clofilium (20, 60 and 200 nmol kg,1 min,1), terfenadine (75, 250 and 750 nmol kg,1 min,1), halofantrine (6, 20 and 60 ,mol kg,1) or vehicle. Clofilium and halofantrine caused dose-dependent increases in the rate-corrected QT interval (QTc), whereas terfenadine prolonged PR and QRS intervals rather than prolonging cardiac repolarization. Progressive bradycardia occurred in all groups. After administration of the highest dose of each drug halofantrine caused a modest decrease in blood pressure, but terfenadine had profound hypotensive effects resulting in death of most rabbits. The total number of ventricular premature beats was highest in the clofilium group. Torsade de pointes occurred in 6 out of 8 clofilium-treated rabbits and 4 out of 6 of those which received halofantrine, but was not seen in any of the seven terfenadine-treated rabbits. These results show that, like clofilium, halofantrine can cause torsade de pointes in a modified anaesthetized rabbit model whereas the primary adverse effect of terfenadine was cardiac contractile failure. British Journal of Pharmacology (2002) 135, 1003,1012; doi:10.1038/sj.bjp.0704550 [source] |