Cardiac Myocytes (cardiac + myocyte)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Cardiac Myocytes

  • isolated cardiac myocyte
  • rat cardiac myocyte


  • Selected Abstracts


    Comparative Pharmacology of Guinea Pig Cardiac Myocyte and Cloned hERG (IKr) Channel

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2004
    CHRISTINA DAVIE Ph.D.
    Introduction: This study used whole-cell, patch clamp techniques on isolated guinea pig ventricular myocytes and HEK293 cells expressing cloned human ether-a-go-go-related gene (hERG) to examine the action of drugs causing QT interval prolongation and torsades de pointes (TdP) in man. Similarities and important differences in drug actions on cardiac myocytes and cloned hERG IKr channels were established. Qualitative actions of the drugs on cardiac myocytes corresponded with results obtained from Purkinje fibers and measurement of QT interval prolongation in animal and human telemetry studies. Methods and Results: Adult guinea pig ventricular myocytes were isolated by enzymatic digestion. Cells were continuously perfused with Tyrode's solution at 33,35°C. Recordings were made using the whole-cell, patch clamp technique. Action potentials (APs) were elicited under current clamp. Voltage clamp was used to study the effect of drugs on IKr (rapidly activating delayed rectifier potassium current), INa (sodium current), and ICa (L-type calcium current). Dofetilide increased the myocyte action potential duration (APD) in a concentration-dependent manner, with a pIC50 of 7.3. Dofetilide 1 ,M elicited early afterdepolarizations (EADs) but had little affect on ICa or INa. E-4031 increased APD in a concentration-dependent manner, with a pIC50 of 7.2. In contrast, 10 ,M loratadine, desloratadine, and cetirizine had little effect on APD or IKr. Interestingly, cisapride displayed a biphasic effect on myocyte APD and inhibited ICa at 1 ,M. Even at this high concentration, cisapride did not elicit EADs. A number of AstraZeneca compounds were tested on cardiac myocytes, revealing a mixture of drug actions that were not observed in hERG currents in HEK293 cells. One compound, particularly AR-C0X, was a potent blocker of myocyte AP (pIC50 of 8.4). AR-C0X also elicited EADs in cardiac myocytes. The potencies of the same set of drugs on the cloned hERG channel also were assessed. The pIC50 values for dofetilide, E-4031, terfenadine, loratadine, desloratadine, and cetirizine were 6.8, 7.1, 7.3, 5.1, 5.2, and <4, respectively. Elevation of temperature from 22 to 35°C significantly enhanced the current kinetics and amplitudes of hERG currents and resulted in approximately fivefold increase in E-4031 potency. Conclusion: Our study demonstrates the advantages of cardiac myocytes over heterologously expressed hERG channels in predicting QT interval prolongation and TdP in man. The potencies of some drugs in cardiac myocytes were similar to hERG, but only myocytes were able to detect important changes in APD characteristics and display EADs predictive of arrhythmia development. We observed similar qualitative drug profiles in cardiac myocytes, dog Purkinje fibers, and animal and human telemetry studies. Therefore, isolated native cardiac myocytes are a better predictor of drug-induced QT prolongation and TdP than heterologously expressed hERG channels. Isolated cardiac myocytes, when used with high-throughput patch clamp instruments, may have an important role in screening potential cardiotoxic compounds in the early phase of drug discovery. This would significantly reduce the attrition rate of drugs entering preclinical and/or clinical development. The current kinetics and amplitudes of the cloned hERG channel were profoundly affected by temperature, significantly altering the potency of one drug (E-4031). This finding cautions against routine drug testing at room temperature compared to physiologic temperature when using the cloned hERG channel. [source]


    Increased Expression of p53 Protein Correlates With the Extent of Myocyte Damage in Cardiac Allograft Rejection

    CONGESTIVE HEART FAILURE, Issue 6 2008
    Bernadette K. McLaren MD
    Acute cardiac allograft rejection (ACAR) has been associated with a poor prognosis. The early diagnosis of ACAR necessitates the accurate detection of myocyte damage. Nuclear damage activates p53, a transcription factor that initiates apoptosis and repair. Endomyocardial biopsies (n=25) from 10 cardiac allograft recipients were stained for nuclear p53. The biopsies were divided into rejection groups based on the grading of ACAR: group 1, grade 0; group 2, grade Ia and Ib; group 3, grades II and III. While clinical indices did not correlate with myocyte damage, significantly more myocytes in group 3 stained for nuclear p53 (2.48±0.60/mm2) compared with group 1 (0.22±0.12/mm2) and group 2 (0.43±0.18/mm2). Increased expression of p53 in cardiac myocytes with grade II or grade III rejection provides an objective quantification as an aid in the diagnosis of ACAR. [source]


    Scn3b knockout mice exhibit abnormal sino-atrial and cardiac conduction properties

    ACTA PHYSIOLOGICA, Issue 1 2010
    P. Hakim
    Abstract Aim:, In contrast to extensive reports on the roles of Nav1.5 , -subunits, there have been few studies associating the , -subunits with cardiac arrhythmogenesis. We investigated the sino-atrial and conduction properties in the hearts of Scn3b,/, mice. Methods:, The following properties were compared in the hearts of wild-type (WT) and Scn3b,/, mice: (1) mRNA expression levels of Scn3b, Scn1b and Scn5a in atrial tissue. (2) Expression of the ,3 protein in isolated cardiac myocytes. (3) Electrocardiographic recordings in intact anaesthetized preparations. (4) Bipolar electrogram recordings from the atria of spontaneously beating and electrically stimulated Langendorff-perfused hearts. Results:,Scn3b mRNA was expressed in the atria of WT but not Scn3b,/, hearts. This was in contrast to similar expression levels of Scn1b and Scn5a mRNA. Immunofluorescence experiments confirmed that the ,3 protein was expressed in WT and absent in Scn3b,/, cardiac myocytes. Lead I electrocardiograms from Scn3b,/, mice showed slower heart rates, longer P wave durations and prolonged PR intervals than WT hearts. Spontaneously beating Langendorff-perfused Scn3b,/, hearts demonstrated both abnormal atrial electrophysiological properties and evidence of partial or complete dissociation of atrial and ventricular activity. Atrial burst pacing protocols induced atrial tachycardia and fibrillation in all Scn3b,/, but hardly any WT hearts. Scn3b,/, hearts also demonstrated significantly longer sinus node recovery times than WT hearts. Conclusion:, These findings demonstrate, for the first time, that a deficiency in Scn3b results in significant atrial electrophysiological and intracardiac conduction abnormalities, complementing the changes in ventricular electrophysiology reported on an earlier occasion. [source]


    Acute effects of desmin mutations on cytoskeletal and cellular integrity in cardiac myocytes

    CYTOSKELETON, Issue 2 2003
    Kurt Haubold
    Mutations in desmin have been associated with a subset of human myopathies. Symptoms typically appear in the second to third decades of life, but in the most severe cases can manifest themselves earlier. How desmin mutations lead to aberrant muscle function, however, remains poorly defined. We created a series of four mutations in rat desmin and tested their in vitro filament assembly properties. RDM-G, a chimera between desmin and green fluorescent protein, formed protofilament-like structures in vitro. RDM-1 and RDM-2 blocked in vitro assembly at the unit-length filament stage, while RDM-3 had more subtle effects on assembly. When expressed in cultured rat neonatal cardiac myocytes via adenovirus infection, these mutant proteins disrupted the endogenous desmin filament to an extent that correlated with their defects in in vitro assembly properties. Disruption of the desmin network by RDM-1 was also associated with disruption of plectin, myosin, and ,-actinin organization in a significant percentage of infected cells. In contrast, expression of RDM-2, which is similar to previously characterized human mutant desmins, took longer to disrupt desmin and plectin organization and had no significant effect on myosin or ,-actinin organization over the 5-day time course of our studies. RDM-3 had the mildest effect on in vitro assembly and no discernable effect on either desmin, plectin, myosin, or ,-actinin organization in vivo. These results indicate that mutations in desmin have both direct and indirect effects on the cytoarchitecture of cardiac myocytes. Cell Motil. Cytoskeleton 54:105,121, 2003. © 2003 Wiley-Liss, Inc. [source]


    Effects of sulfonylureas on mitochondrial ATP-sensitive K+ channels in cardiac myocytes: implications for sulfonylurea controversy

    DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2006
    Toshiaki Sato
    Abstract Background Mitochondrial ATP-sensitive K+ (mitoKATP) channel plays a key role in cardioprotection. Hence, a sulfonylurea that does not block mitoKATP channels would be desirable to avoid damage to the heart. Accordingly, we examined the effects of sulfonylureas on the mitoKATP channel and mitochondrial Ca2+ overload. Methods Flavoprotein fluorescence in rabbit ventricular myocytes was measured to assay mitoKATP channel activity. The mitochondrial Ca2+ concentration was measured by loading cells with rhod-2. Results The mitoKATP channel opener diazoxide (100 µM) reversibly increased flavoprotein oxidation to 31.8 ± 4.3% (n = 5) of the maximum value induced by 2,4-dinitrophenol. Glimepiride (10 µM) alone did not oxidize the flavoprotein, and the oxidative effect of diazoxide was unaffected by glimepiride (35.4 ± 3.2%, n = 5). Similarly, the diazoxide-induced flavoprotein oxidation was unaffected both by gliclazide (10 µM) and by tolbutamide (100 µM). Exposure to ouabain (1 mM) for 30 min produced mitochondrial Ca2+ overload, and the intensity of rhod-2 fluorescence increased to 197.4 ± 7.2% of baseline (n = 11). Treatment with diazoxide significantly reduced the ouabain-induced mitochondrial Ca2+ overload (149.6 ± 5.1%, n = 11, p < 0.05 versus ouabain alone), and the effect was antagonized by the mitoKATP channel blocker 5-hydroxydecanoate (189.8 ± 27.8%, n = 5) and glibenclamide (193.1 ± 7.7%, n = 8). On the contrary, cardioprotective effect of diazoxide was not abolished by glimepiride (141.8 ± 7.8%, n = 6), gliclazide (139.0 ± 9.4%, n = 5), and tolbutamide (141.1 ± 4.5%, n = 7). Conclusions Our results indicate that glimepiride, gliclazide, and tolbutamide have no effect on mitoKATP channel, and do not abolish the cardioprotective effects of diazoxide. Therefore, these sulfonylureas, unlike glibenclamide, do not interfere with the cellular pathways that confer cardioprotection. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Effects of labedipinedilol-A, third-generation dihydropyridine-type calcium blocker, on ouabain-induced arrhythmia

    DRUG DEVELOPMENT RESEARCH, Issue 1 2008
    Jhy-Chong Liang
    Abstract Labedipinedilol-A, a novel dihydropyridine-type calcium antagonist with ,/,-adrenoceptor blocking properties, has been reported to produce a cardioprotective effect against ischemia reperfusion injury in rats. We investigated the protective effects of labedipinedilol-A on ouabain-induced tonotropy and arrhythmias in isolated whole atria, and using patch-clamp techniques to study the underlying mechanism of its antiarrhythmic activity on isolated cardiac myocytes. Labedipinedilol-A (10,µM) suppressed the tonotropic effect of ouabain significantly and prolonged the onset time of extra-systole (arrhythmia) induced by ouabain in isolate atria. In the voltage-clamp study, labedipinedilol-A (1,100,µM) reduced the peak amplitude of sodium inward current (INa) and L-type calcium current (ICa-L), and shifted the current-voltage (I-V) curve upward in a concentration-dependent manner. In contrast, the addition of labedipinedilol-A increased transient outward potassium current (Ito) and inward rectifier potassium current (IK1) significantly. Labedipinedilol-A (10,µM) also effectively depressed the isoproterenol-induced increase in the Ca2+ current. These results show that labedipinedilol-A blocks ICa-L and INa, and increases Ito and IK1. These findings indicate that labedipinedilol-A produces direct cardiac action, probably due to the inhibition of cardiac Na+ and Ca2+ channels. Our results suggest that labedipinedilol-A may reduce the membrane conduction through inhibition of ionic channels which decrease ouabain-induced arrhythmia. Drug Dev Res 69:26,33, 2008 © 2008 Wiley-Liss, Inc. [source]


    Functional and molecular evidence of adenosine A2A receptor in coronary arteriolar dilation to adenosine

    DRUG DEVELOPMENT RESEARCH, Issue 1-2 2001
    Lih Kuo
    Abstract Adenosine is a potent vasodilator implicated in the regulation of coronary microvascular diameter during metabolic stress. However, the specific adenosine receptors and underlying mechanism responsible for the dilation of coronary microvessels to adenosine remains to be elucidated. Thus, pig subepicardial coronary arterioles (<100 ,m) were isolated, cannulated, and pressurized without flow for in vitro study. All vessels developed basal tone and dilated concentration-dependently to adenosine. Disruption of endothelium and inhibition of nitric oxide (NO) synthase by L-NAME produced identical attenuation of adenosine-induced dilation. KATP channel inhibitor glibenclamide further reduced the dilation of denuded vessels. cAMP antagonist Rp-8-Br-cAMP blocked vasodilation to forskolin, but failed to inhibit vasodilation to adenosine. Coronary dilation to adenosine was blocked by a selective adenosine A2A receptor antagonist ZM241385, but was not altered by an A1 receptor antagonist, DPCPX. Reverse transcription-polymerase chain reaction study revealed that A2A receptor mRNA was expressed in microvessels but not in cardiac myocytes; A1 receptor expression was observed only in cardiac myocytes. These results suggest that adenosine-induced dilation of coronary arterioles is mediated predominantly by A2A receptors. Activation of these receptors elicits vasodilation by endothelial release of NO and by smooth muscle opening of KATP channels in a cAMP-independent manner. Drug Dev. Res. 52:350,356, 2001. © 2001 Wiley-Liss, Inc. [source]


    Role of Ca2+ -Activated Cl, Current in Ventricular Action Potentials of Sheep During Adrenoceptor Stimulation

    EXPERIMENTAL PHYSIOLOGY, Issue 2 2001
    Arie O. Verkerk
    Adrenoceptor stimulation enhances repolarising and depolarising membrane currents to different extents in cardiac myocytes. We investigated the opposing effects of the repolarising Ca2+ -activated Cl, current (ICl(Ca)) and depolarising L-type Ca2+ current (ICa,L) on the action potential configuration of sheep ventricular myocytes stimulated with noradrenaline. Whole-cell current-clamp recordings revealed that noradrenaline accelerated and prolonged phase-1 repolarisation. We define the minimal potential at the end of phase-1 repolarisation as ,notch level'. Noradrenaline (1 ,M) caused the notch level to fall from 14 ± 2.6 to 7.8 ± 2.8 mV (n= 24), but left action potential duration, resting membrane potential or action potential amplitude unaffected. Whole-cell voltage-clamp recordings showed that 1 ,M noradrenaline increased both ICa,L and ICl(Ca), but it had no significant effect on the principal K+ currents. Blockage of ICl(Ca) by 0.5 mM 4,4,-diisothiocyanatostilbene-2,2,-disulphonic acid (DIDS) in both the absence and the presence of noradrenaline abolished phase-1 repolarisation. In the presence of noradrenaline, DIDS caused elevation of the plateau phase amplitude and an increase in the action potential duration. In conclusion, elevation of the plateau phase amplitude and action potential prolongation associated with an increased ICa,L upon adrenoceptor stimulation is prevented by an increased ICl(Ca) in sheep ventricular myocytes. [source]


    Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues

    FEBS JOURNAL, Issue 12 2003
    Rui Wang
    Activation of a calcium-sensing receptor (Ca-SR) leads to increased intracellular calcium concentration and altered cellular activities. The expression of Ca-SR has been identified in both nonexcitable and excitable cells, including neurons and smooth muscle cells. Whether Ca-SR was expressed and functioning in cardiac myocytes remained unclear. In the present study, the transcripts of Ca-SR were identified in rat heart tissues using RT-PCR that was further confirmed by sequence analysis. Ca-SR proteins were detected in rat ventricular and atrial tissues as well as in isolated cardiac myocytes. Anti-(Ca-SR) Ig did not detect any specific bands after preadsorption with standard Ca-SR antigens. An immunohistochemistry study revealed the presence of Ca-SR in rat cardiac as well as other tissues. An increase in extracellular calcium or gadolinium induced a concentration-dependent sustained increase in [Ca2+]i in isolated ventricular myocytes from adult rats. Spermine (1,10 mm) also increased [Ca2+]i. Pre-treatment of cardiac myocytes with thapsigargin or U73122 abolished the extracellular calcium, gadolinium or spermine-induced increase in [Ca2+]i. The blockade of Na+/Ca2+ exchanger or voltage-dependent calcium channels did not alter the extracellular calcium-induced increase in [Ca2+]i. Finally, extracellular calcium, gadolinium and spermine all increased intracellular inositol 1,4,5-triphosphate (IP3) levels. Our results demonstrated that Ca-SR was expressed in cardiac tissue and cardiomyocytes and its function was regulated by extracellular calcium and spermine. [source]


    Localization of the mosaic transmembrane serine protease corin to heart myocytes

    FEBS JOURNAL, Issue 23 2000
    John D. Hooper
    Corin cDNA encodes an unusual mosaic type II transmembrane serine protease, which possesses, in addition to a trypsin-like serine protease domain, two frizzled domains, eight low-density lipoprotein (LDL) receptor domains, a scavenger receptor domain, as well as an intracellular cytoplasmic domain. In in vitro experiments, recombinant human corin has recently been shown to activate pro-atrial natriuretic peptide (ANP), a cardiac hormone essential for the regulation of blood pressure. Here we report the first characterization of corin protein expression in heart tissue. We generated antibodies to two different peptides derived from unique regions of the corin polypeptide, which detected immunoreactive corin protein of approximately 125,135 kDa in lysates from human heart tissues. Immunostaining of sections of human heart showed corin expression was specifically localized to the cross striations of cardiac myocytes, with a pattern of expression consistent with an integral membrane localization. Corin was not detected in sections of skeletal or smooth muscle. Corin has been suggested to be a candidate gene for the rare congenital heart disease, total anomalous pulmonary venous return (TAPVR) as the corin gene colocalizes to the TAPVR locus on human chromosome 4. However examination of corin protein expression in TAPVR heart tissue did not show evidence of abnormal corin expression. The demonstrated corin protein expression by heart myocytes supports its proposed role as the pro-ANP convertase, and thus a potentially critical mediator of major cardiovascular diseases including hypertension and congestive heart failure. [source]


    Calcium homeostasis and signaling in yeast cells and cardiac myocytes

    FEMS YEAST RESEARCH, Issue 8 2009
    Jiangjun Cui
    Abstract Calcium ions are the most ubiquitous and versatile signaling molecules in eukaryotic cells. Calcium homeostasis and signaling systems are crucial for both the normal growth of the budding yeast Saccharomyces cerevisiae and the intricate working of the mammalian heart. In this paper, we make a detailed comparison between the calcium homeostasis/signaling networks in yeast cells and those in mammalian cardiac myocytes. This comparison covers not only the components, structure and function of the networks but also includes existing knowledge on the measured and simulated network dynamics using mathematical models. Surprisingly, most of the factors known in the yeast calcium homeostasis/signaling network are conserved and operate similarly in mammalian cells, including cardiac myocytes. Moreover, the budding yeast S. cerevisiae is a simple organism that affords powerful genetic and genomic tools. Thus, exploring and understanding the calcium homeostasis/signaling system in yeast can provide a shortcut to help understand calcium homeostasis/signaling systems in mammalian cardiac myocytes. In turn, this knowledge can be used to help treat relevant human diseases such as pathological cardiac hypertrophy and heart failure. [source]


    Deficiency of Myo18B in mice results in embryonic lethality with cardiac myofibrillar aberrations

    GENES TO CELLS, Issue 10 2008
    Rieko Ajima
    Myo18B is an unconventional myosin family protein expressed predominantly in muscle cells. Although conventional myosins are known to be localized on the A-bands and function as a molecular motor for muscle contraction, Myo18B protein was localized on the Z-lines of myofibrils in striated muscles. Like Myo18A, another 18th class of myosin, the N-terminal unique domain of the protein and not the motor domain and the coiled-coil tail is critical for its localization to F-actin in myocytes. Myo18B expression was induced by myogenic differentiation through the binding of myocyte-specific enhancer factor-2 to its promoter. Deficiency of Myo18B caused an embryonic lethality in mice accompanied by disruption of myofibrillar structures in cardiac myocytes at embryonic day 10.5. Thus, Myo18B is a unique unconventional myosin that is predominantly expressed in myocytes and whose expression is essential for the development and/or maintenance of myofibrillar structure. [source]


    Comparative Pharmacology of Guinea Pig Cardiac Myocyte and Cloned hERG (IKr) Channel

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2004
    CHRISTINA DAVIE Ph.D.
    Introduction: This study used whole-cell, patch clamp techniques on isolated guinea pig ventricular myocytes and HEK293 cells expressing cloned human ether-a-go-go-related gene (hERG) to examine the action of drugs causing QT interval prolongation and torsades de pointes (TdP) in man. Similarities and important differences in drug actions on cardiac myocytes and cloned hERG IKr channels were established. Qualitative actions of the drugs on cardiac myocytes corresponded with results obtained from Purkinje fibers and measurement of QT interval prolongation in animal and human telemetry studies. Methods and Results: Adult guinea pig ventricular myocytes were isolated by enzymatic digestion. Cells were continuously perfused with Tyrode's solution at 33,35°C. Recordings were made using the whole-cell, patch clamp technique. Action potentials (APs) were elicited under current clamp. Voltage clamp was used to study the effect of drugs on IKr (rapidly activating delayed rectifier potassium current), INa (sodium current), and ICa (L-type calcium current). Dofetilide increased the myocyte action potential duration (APD) in a concentration-dependent manner, with a pIC50 of 7.3. Dofetilide 1 ,M elicited early afterdepolarizations (EADs) but had little affect on ICa or INa. E-4031 increased APD in a concentration-dependent manner, with a pIC50 of 7.2. In contrast, 10 ,M loratadine, desloratadine, and cetirizine had little effect on APD or IKr. Interestingly, cisapride displayed a biphasic effect on myocyte APD and inhibited ICa at 1 ,M. Even at this high concentration, cisapride did not elicit EADs. A number of AstraZeneca compounds were tested on cardiac myocytes, revealing a mixture of drug actions that were not observed in hERG currents in HEK293 cells. One compound, particularly AR-C0X, was a potent blocker of myocyte AP (pIC50 of 8.4). AR-C0X also elicited EADs in cardiac myocytes. The potencies of the same set of drugs on the cloned hERG channel also were assessed. The pIC50 values for dofetilide, E-4031, terfenadine, loratadine, desloratadine, and cetirizine were 6.8, 7.1, 7.3, 5.1, 5.2, and <4, respectively. Elevation of temperature from 22 to 35°C significantly enhanced the current kinetics and amplitudes of hERG currents and resulted in approximately fivefold increase in E-4031 potency. Conclusion: Our study demonstrates the advantages of cardiac myocytes over heterologously expressed hERG channels in predicting QT interval prolongation and TdP in man. The potencies of some drugs in cardiac myocytes were similar to hERG, but only myocytes were able to detect important changes in APD characteristics and display EADs predictive of arrhythmia development. We observed similar qualitative drug profiles in cardiac myocytes, dog Purkinje fibers, and animal and human telemetry studies. Therefore, isolated native cardiac myocytes are a better predictor of drug-induced QT prolongation and TdP than heterologously expressed hERG channels. Isolated cardiac myocytes, when used with high-throughput patch clamp instruments, may have an important role in screening potential cardiotoxic compounds in the early phase of drug discovery. This would significantly reduce the attrition rate of drugs entering preclinical and/or clinical development. The current kinetics and amplitudes of the cloned hERG channel were profoundly affected by temperature, significantly altering the potency of one drug (E-4031). This finding cautions against routine drug testing at room temperature compared to physiologic temperature when using the cloned hERG channel. [source]


    Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5a 2008
    E. Y. Plotnikov
    Abstract The goals of the study were: (1) to explore the communication between human mesenchymal stem cells (MSC) and rat cardiac myocytes resulting in differentiation of the stem cells and, (2) to evaluate the role of mitochondria in it. Light and fluorescence microscopy as well as scanning electron microscopy revealed that after co-cultivation, cells formed intercellular contacts and transient exchange with cytosolic elements could be observed. The transport of cytosolic entity had no specific direction. Noticeably, mitochondria also could be transferred to the recipient cells in a unidirectional fashion (towards cardiomyocytes only). Transmission electron microscopy revealed significant variability in both the diameter of intercellular contacting tubes and their shape. Inside of these nanotubes mitochondria-resembling structures were identified. Moreover, after co-cultivation with cardiomyocytes, expression of human-specific myosin was revealed in MSC. Thus, we speculate that: (1) transport of intracellular elements to MSC possibly can determine the direction of their differentiation and, (2) mitochondria may be involved in the mechanism of the stem cell differentiation. It looks plausible that mitochondrial transfer to recipient cardiomyocytes may be involved in the mechanism of failed myocardium repair after stem cells transplantation. [source]


    Beneficial effect of enalapril in spontaneously hypertensive rats cardiac remodeling with nitric oxide synthesis blockade

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2002
    R. L. de Andrade Zorzi
    Abstract Aims. To study the efficiency of an angiotensin converting enzyme inhibitor on the blood pressure (BP) and the myocardium remodeling when spontaneously hypertensive rats (SHRs) are submitted to nitric oxide synthesis (NOs) blockade (with L-NAME) and simultaneously treated. Methods. Young adult male SHRs were separated in four groups (n = 5) and treated for 20 days: Control, L-NAME, L-NAME+Enalapril, and Enalapril. The alterations of the BP, heart mass/body mass ratio and stereological parameters for myocytes, connective tissue and intramyocardial vessels were studied among the groups. Results. The SHRs with NOs blockade showed a great modification of the myocardium with extensive areas of reparative and interstitial fibrosis and accentuated hypertrophy of the cardiac myocytes (cross sectional area 60% higher in animals taking L-NAME than in Control SHRs). Comparing the SHRs with NO deficiency (L-NAME group), the Control SHRs and the Enalapril treated SHRs significant differences were found in the BP and in all stereological parameters. The NO deficiency caused an important BP increment in SHRs that was partially attenuated by Enalapril. This Enalapril effect was more pronounced in Control SHRs. A significant increment of the intramyocardial vessels was observed in NO deficient SHRs and Control SHRs treated with Enalapril demonstrated by the stereology (greater microvascular densities in treated SHRs). Conclusion. Enalapril administration showed a beneficial effect on vascular remodeling and myocardial hypertrophy in SHRs. In SHRs with NO blockade, however, the beneficial effect of Enalapril occurred only in vascular remodeling. [source]


    Morphological changes associated with reoxygenation in adult cardiac myocytes

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2001
    P. M. Kang
    No abstract is available for this article. [source]


    Silibinin attenuates cardiac hypertrophy and fibrosis through blocking EGFR-dependent signaling,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010
    Wen Ai
    Abstract Cardiac hypertrophy is a major determinant of heart failure. The epidermal growth factor receptor (EGFR) plays an important role in cardiac hypertrophy. Since silibinin suppresses EGFR in vitro and in vivo, we hypothesized that silibinin would attenuate cardiac hypertrophy through disrupting EGFR signaling. In this study, we examined this hypothesis using neonatal cardiac myocytes and fibroblasts induced by angiotensin II (Ang II) and animal model by aortic banding (AB) mice. Our data revealed that silibinin obviously blocked cardiac hypertrophic responses induced by pressure overload. Meanwhile, silibinin markedly reduced the increased generation of EGFR. Moreover, these beneficial effects were associated with attenuation of the EGFR-dependent ERK1/2, PI3K/Akt signaling cascade. We further demonstrated silibinin decreased inflammation and fibrosis by blocking the activation of NF-,B and TGF-,1/Smad signaling pathways in vitro and in vivo. Our results indicate that silibinin has the potential to protect against cardiac hypertrophy, inflammation, and fibrosis through blocking EGFR activity and EGFR-dependent different intracellular signaling pathways. J. Cell. Biochem. 110: 1111,1122, 2010. Published 2010 Wiley-Liss, Inc. [source]


    Mechanisms of cardioprotection by lysophospholipids

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
    Joel S. Karliner
    Abstract The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphosphatidic acid (LPA) reduce mortality in hypoxic cardiac myocytes. S1P is also cardioprotective in both mouse and rat models of cardiac ischemia/reperfusion (I/R) injury. Although these results are consistent with prior work in other cell types, it is not known what signaling events are critical to cardioprotection, particularly with respect to ceramide and the preservation of mitochondrial function, which is essential for cardiac cell survival. Neither receptor regulation nor signaling has been studied during I/R in the heart with or without the application of S1P or LPA. The role of sphingosine kinase in I/R and in ischemic preconditioning (IPC) has not been defined, nor has the fate or function of S1P generated by this enzyme, particularly during preconditioning or I/R, been elucidated. Whether S1P infused systemically in animal models of myocardial infarction in which survival is an end-point will be hemodynamically tolerated has not been determined. If not, the substitution of agents such as the monosialoganglioside GM-1, which activates sphingosine kinase, or the development of alternative ligands for S1P receptors will be necessary. © 2004 Wiley-Liss, Inc. [source]


    Platelet-derived growth factor-BB phosphorylates heat shock protein 27 in cardiac myocytes

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004
    Motoki Takenaka
    Abstract It is recognized that heat shock protein 27 (HSP27) is highly expressed in heart. In the present study, we investigated whether platelet-derived growth factor (PDGF) phosphorylates HSP27 in mouse myocytes, and the mechanism underlying the HSP27 phosphorylation. Administration of PDGF-BB induced the phosphorylation of HSP27 at Ser-15 and -85 in mouse cardiac muscle in vivo. In primary cultured myocytes, PDGF-BB time dependently phosphorylated HSP27 at Ser-15 and -85. PDGF-BB stimulated the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) among the MAP kinase superfamily. SB203580, a specific inhibitor of p38 MAP kinase, reduced the PDGF-BB-stimulated phosphorylation of HSP27 at both Ser-15 and -85, and phosphorylation of p38 MAP kinase. However, PD98059, a specific inhibitor of MEK, or SP600125, a specific inhibitor of SAPK/JNK, failed to affect the HSP27 phosphorylation. These results strongly suggest that PDGF-BB phosphorylates HSP27 at Ser-15 and -85 via p38 MAP kinase in cardiac myocytes. © 2003 Wiley-Liss, Inc. [source]


    Stem cells: A minireview

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue S38 2002
    Kathyjo A. Jackson
    Abstract The identification of adult-derived stem cells which maintain plasticity throughout the course of a lifetime, has transformed the field of stem cell biology. Bone marrow derived hematopoietic stem cells (HSC) are the most well-characterized population of these multipotential cells. First identified for their ability to reconstitute blood lineages and rescue lethally irradiated hosts, these cells have also been shown to differentiate and integrate into skeletal muscle, cardiac myocytes, vascular endothelium, liver, and brain tissue. Various populations of HSC are being studied, exploiting cell surface marker expression, such as Sca-1, c-kit, CD34, and lin,; as well as the ability to efflux the vital dye Hoecsht 33342. Detection of engrafted donor derived cells into various tissue types in vivo is a laborious process and may involve detection of ,-galactosidase via colorimetric reaction or antibody labeling or green fluorescent protein (GFP) via fluorescence microscopy, as well as in situ hybridization to detect the Y-chromosome. Using these techniques, the search has begun for tissue specific stem cells capable of host tissue regeneration, self renewal, and transdifferentiation. Caution is urged when interpreting these types of experiments because although they are stimulating, limitations of the technologies may provide misleading results. J. Cell. Biochem. Suppl. 38: 1,6, 2002. © 2002 Wiley-Liss, Inc. [source]


    Heme oxygenase-1 gene transfer inhibits angiotensin II-mediated rat cardiac myocyte apoptosis but not hypertrophy,

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006
    Roger S.Y. Foo
    Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure. J. Cell. Physiol. 209: 1,7, 2006. © 2006 Wiley-Liss, Inc. [source]


    Adrenergic regulation of cardiac myocyte apoptosis

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2001
    Krishna Singh
    The direct effects of catecholamines on cardiac myocytes may contribute to both normal physiologic adaptation and pathologic remodeling, and may be associated with cellular hypertrophy, apoptosis, and alterations in contractile function. Norepinephrine (NE) signals via ,- and ,-adrenergic receptors (AR) that are coupled to G-proteins. Pharmacologic studies of cardiac myocytes in vitro demonstrate that stimulation of ,1 -AR induces apoptosis which is cAMP-dependent and involves the voltage-dependent calcium influx channel. In contrast, stimulation of ,2 -AR exerts an anti-apoptotic effect which appears to be mediated by a pertussis toxin-sensitive G protein. Stimulation of ,1 -AR causes myocyte hypertrophy and may exert an anti-apoptotic action. In transgenic mice, myocardial overexpression of either ,1 -AR or G,s is associated with myocyte apoptosis and the development of dilated cardiomyopathy. Myocardial overexpression of ,2 -AR at low levels results in improved cardiac function, whereas expression at high levels leads to dilated cardiomyopathy. Overexpression of wildtype ,1B -AR does not result in apoptosis, whereas overexpression of G,q results in myocyte hypertrophy and/or apoptosis depending on the level of expression. Differential activation of the members of the mitogen-activated protein kinase (MAPK) superfamily and production of reactive oxygen species appear to play a key role in mediating the actions of adrenergic pathways on myocyte apoptosis and hypertrophy. This review summarizes current knowledge about the molecular and cellular mechanisms involved in the regulation of cardiac myocyte apoptosis via stimulation of adrenergic receptors and their coupled effector pathways. © 2001 Wiley-Liss, Inc. [source]


    Stem Cell Review Series: Regulating highly potent stem cells in aging: environmental influences on plasticity

    AGING CELL, Issue 4 2008
    Jay M. Edelberg
    Summary Significant advances in the past decade have revealed that a large number of highly plastic stem cells are maintained in humans through adulthood and are present even in older adults. These findings are notable in light of the reduced capacity for repair and regeneration in older tissues. The apparent dichotomy can be reconciled through an appreciation of the age-associated changes in the microenvironmental pathways that govern adult stem cell plasticity and differentiation patterns. Specifically, the recent identification of the age-related loss of the local platelet-derived growth factor signals that promote the induction of cardiac myocytes from Oct-3/4+ bone marrow stem cells, rather than impairment in the stem cells themselves, provides a template for understanding and targeting the environmental pathways underlying the regenerative capacity of older tissues and organs. It is projected that this paradigm extends to the overall regulation of adult stem cell biology, shifting the balance from tissue generation during development and maturation to the prevention of untoward stem cell differentiation with aging. [source]


    Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification

    AGING CELL, Issue 2 2005
    Shi-Yan Li
    Summary Evidence suggests that aging, per se, is a major risk factor for cardiac dysfunction. Oxidative modification of cardiac proteins by non-enzymatic glycation, i.e. advanced glycation endproducts (AGEs), has been implicated as a causal factor in the aging process. This study was designed to examine the role of aging on cardiomyocyte contractile function, cardiac protein oxidation and oxidative modification. Mechanical properties were evaluated in ventricular myocytes from young (2-month) and aged (24,26-month) mice using a MyoCam® system. The mechanical indices evaluated were peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (± dL/dt). Oxidative stress and protein damage were evaluated by glutathione and glutathione disulfide (GSH/GSSG) ratio and protein carbonyl content, respectively. Activation of NAD(P)H oxidase was determined by immunoblotting. Aged myocytes displayed a larger cell cross-sectional area, prolonged TR90, and normal PS, ± dL/dt and TPS compared with young myocytes. Aged myocytes were less tolerant of high stimulus frequency (from 0.1 to 5 Hz) compared with young myocytes. Oxidative stress and protein oxidative damage were both elevated in the aging group associated with significantly enhanced p47phox but not gp91phox expression. In addition, level of cardiac AGEs was ,2.5-fold higher in aged hearts than young ones determined by AGEs-ELISA. A group of proteins with a molecular range between 50 and 75 kDa with pI of 4,7 was distinctively modified in aged heart using one- or two-dimension SDS gel electrophoresis analysis. These data demonstrate cardiac diastolic dysfunction and reduced stress tolerance in aged cardiac myocytes, which may be associated with enhanced cardiac oxidative damage, level of AGEs and protein modification by AGEs. [source]


    Alcohol in Moderation, Cardioprotection, and Neuroprotection: Epidemiological Considerations and Mechanistic Studies

    ALCOHOLISM, Issue 2 2009
    Michael A. Collins
    In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions,pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, ,-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways. [source]


    Cardiac Overexpression of Alcohol Dehydrogenase Exacerbates Cardiac Contractile Dysfunction, Lipid Peroxidation, and Protein Damage After Chronic Ethanol Ingestion

    ALCOHOLISM, Issue 7 2003
    Kadon K. Hintz
    Background: Alcoholic cardiomyopathy is manifested as ventricular dysfunction, although its specific toxic mechanism remains obscure. This study was designed to examine the impact of enhanced acetaldehyde exposure on cardiac function via cardiac-specific overexpression of alcohol dehydrogenase (ADH) after alcohol intake. Methods: ADH transgenic and wild-type FVB mice were placed on a 4% alcohol or control diet for 8 weeks. Mechanical and intracellular Ca2+ properties were evaluated in cardiac myocytes. Levels of acetaldehyde, lipid peroxidation, and protein carbonyl formation were determined. Results: FVB and ADH mice consuming ethanol exhibited elevated blood ethanol/acetaldehyde, cardiac acetaldehyde, and cardiac hypertrophy compared with non-ethanol-consuming mice. However, the levels of cardiac acetaldehyde and hypertrophy were significantly greater in ADH ethanol-fed mice than FVB ethanol-fed mice. ADH transgene itself did not affect mechanical and intracellular Ca2+ properties with the exception of reduced resting intracellular Ca2+ and Ca2+ re-sequestration at low pace frequency. Myocytes from ethanol-fed mice showed significantly depressed peak shortening, velocity of shortening/relengthening, rise of intracellular Ca2+ transients, and sarco(endo)plasmic reticulum Ca2+ load associated with similar duration of shortening/relengthening compared with myocytes from control mice. Strikingly, the ethanol-induced mechanical and intracellular Ca2+ defects were exacerbated in ADH myocytes compared with the FVB group except velocity of shortening/relengthening. The lipid peroxidation end products malondialdehyde and protein carbonyl formation were significantly elevated in both livers and hearts after chronic ethanol consumption, with the cardiac lipid and protein damage being exaggerated by ADH transgene. Conclusion: These data suggest that increased cardiac acetaldehyde exposure due to ADH transgene may play an important role in cardiac contractile dysfunctions associated with lipid and protein damage after alcohol intake. [source]


    Statins modulate expression of components of the plasminogen activator/plasmin system in human cardiac myocytes in vitro

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2006
    S. DEMYANETS
    [source]


    Pharmacological targeting of CDK9 in cardiac hypertrophy

    MEDICINAL RESEARCH REVIEWS, Issue 4 2010
    Vladimír Kry
    Abstract Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C -terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy. © 2009 Wiley Periodicals, Inc. Med Res Rev 30, No. 4, 646,666, 2010 [source]


    Feasibility of complementary spatial modulation of magnetization tagging in the rat heart after manganese injection

    NMR IN BIOMEDICINE, Issue 1 2008
    J.-N. Hyacinthe
    Abstract It has been shown that manganese-enhanced MRI (MEMRI) can safely depict the myocardial area at risk in models of coronary occlusion,reperfusion for at least 2,h after reperfusion. To achieve this, a solution of MnCl2 is injected during coronary occlusion. In this model, the regional function quantification deficit of the stunning phase cannot be assessed before contrast injection using MR tagging. The relaxation effects of manganese (which remains in normal cardiac myocytes for several hours) may alter the tags by increasing tag fading and hence the quality of strain measurement. Therefore, we evaluated the feasibility of cardiac MR tagging after manganese injection in normal rats. Six normal Sprague,Dawley rats were imaged in vivo using complementary spatial modulation of magnetization (C-SPAMM) at 1.5,T, before and 15,min after intraperitoneal injection of MnCl2 solution (,17.5,µmol,kg,1). The contrast-to-noise ratio of the tag pattern increased significantly (P,<,0.001) after injection and remained comparable to the control scan in spite of the higher myocardial relaxation rate caused by the presence of manganese. The measurements of circumferential strain obtained from harmonic phase imaging analysis of the tagged images after MnCl2 injection did not differ significantly from the measurements before injection in the endocardial, mid-wall, and epicardial regions. In particular, the transmural strain gradient was preserved. Thus, our study suggests that MR tagging could be used in combination with MEMRI to study the acute phase of coronary artery disease. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Bone marrow stem cells regenerate infarcted myocardium

    PEDIATRIC TRANSPLANTATION, Issue 2003
    Donald Orlic
    Abstract: Heart disease is the leading cause of death in the United States for both men and women. Nearly 50% of all cardiovascular deaths result from coronary artery disease. Occlusion of the left coronary artery leads to ischemia, infarction, necrosis of the affected myocardial tissue followed by scar formation and loss of function. Although myocytes in the surviving myocardium undergo hypertrophy and cell division occurs in the border area of the dead tissue, myocardial infarcts do not regenerate and eventually result in the death of the individual. Numerous attempts have been made to repair damaged myocardium in animal models and in humans. Bone marrow stem cells (BMSC) retain the ability throughout adult life to self-renew and differentiate into cells of all blood lineages. These adult BMSC have recently been shown to have the capacity to differentiate into multiple specific cell types in tissues other than bone marrow. Our research is focused on the capacity of BMSC to form new cardiac myocytes and coronary vessels following an induced myocardial infarct in adult mice. In this paper we will review the data we have previously published from studies on the regenerative capacity of BMSC in acute ischemic myocardial injury. In one experiment donor BMSC were injected directly into the healthy myocardium adjacent to the injured area of the left ventricle. In the second experiment, mice were treated with cytokines to mobilize their BMSC into the circulation on the theory that the stem cells would traffic to the myocardial infarct. In both experimental protocols, the BMSC gave rise to new cardiac myocytes and coronary blood vessels. This BMSC-derived myocardial regeneration resulted in improved cardiac function and survival. [source]