Carbon Supply (carbon + supply)

Distribution by Scientific Domains

Selected Abstracts

Interaction of UV Radiation and Inorganic Carbon Supply in the Inhibition of Photosynthesis: Spectral and Temporal Responses of Two Marine Picoplankters,

Cristina Sobrino
ABSTRACT The effect of ultraviolet radiation (UVR) on inhibition of photosynthesis was studied in two species of marine picoplankton with different carbon concentration mechanisms: Nannochloropsis gaditana Lubián possesses a bicarbonate uptake system and Nannochloris atomus Butcher a CO2 active transport system. Biological weighting functions (BWFs) for inhibition of photosynthesis by UVR and photosynthesis vs irradiance (PI) curves for photosynthetically active radiation (PAR) were estimated for both species grown with an enriched CO2 supply (high dissolved inorganic carbon [DIC]: 1% CO2 in air) and in atmospheric CO2 levels (low DIC: 0.03% CO2). The response to UVR and PAR exposures was different in each species depending on the DIC treatment. Under PAR exposure, rates of maximum photosynthesis were similar between treatments in N. gaditana. However, the cultures growing in high DIC had lower sensitivity to UVR than the low DIC cultures. In contrast, N. atomus had higher rates of photosynthesis under PAR exposure with high DIC, but the BWFs were not significantly different between treatments. The results suggest that one or more processes in N. gaditana associated with HCO3, transport are target(s) for UV photodamage because there was relatively less UV inhibition of the high DIC-grown cultures in which inorganic carbon fixation is supplied by passive CO2 diffusion. Time courses of photochemical efficiency in PAR, during UV exposure and during subsequent recovery in PAR, were determined using a pulse amplitude modulated fluorometer. The results were consistent with the BWFs. In all time courses, a steady state was obtained after an initial decrease, consistent with a dynamic balance between damage and repair as found for other phytoplankton. However, the relationship of response to exposure showed a steep decline in activity that is consistent with a constant rate of repair. A novel feature of a model developed from a constant repair rate is an explicit threshold for photosynthetic response to UV. [source]

Separating host-tree and environmental determinants of honeydew production by Ultracoelostoma scale insects in a Nothofagus forest

Abstract 1.,Sugar-rich honeydew excreted (,produced') by insects feeding on phloem sap is a key energy flow in a range of temperate and tropical ecosystems. The present study measured honeydew produced by Ultracoelostoma sp. (Homoptera: Coelostomidiidae) scale insects feeding on Nothofagus solandri var. solandri (Hook f.) Oerst. trees in a temperate evergreen forest in New Zealand. Simultaneous measurements of environmental variables and canopy photosynthesis were conducted to allow separation of host-tree and environmental determinants of honeydew production. These relationships were further examined in experiments where canopy photosynthesis was manipulated by shading or plant nitrogen levels increased by foliar spray. 2.,Rates of honeydew production varied nine-fold from a maximum (± 1 SE) of 64.4 ± 15.2 mg dry mass m,2 bark h,1 in early summer (December) to a minimum of 7.4 ± 4.2 mg m,2 h,1 in winter (August). Rates of production measured 1.4 m from the base of the trees' stems varied significantly with stem diameter, and were higher on medium-sized (18 cm diameter) than small or large stems. 3.,Rates of production were significantly related to environmental conditions over the hours preceding measurement (air temperature and air saturation deficit averaged over the preceding 24 and 12 h respectively). There was no evidence that rates of production were directly related to short-term changes in the supply of carbohydrates from the canopy (either when compared with measurements of unmanipulated photosynthetic rate, or after sugar levels were manipulated by shading 80% of host-trees' leaf area), or to changes in phloem nitrogen content. 4.,The results show that there is no clear effect of host-tree carbon supply on honeydew production; if production is related to photosynthesis, the effect of this is much less important that the large and significant direct effect of environmental conditions on honeydew production. [source]

Carbon limitation in trees

Christian Körner
Summary 1The ongoing enrichment of the atmosphere with CO2 raises the question of whether growth of forest trees, which represent close to 90% of the global biomass carbon, is still carbon limited at current concentrations of close to 370 p.p.m. As photosynthesis of C3 plants is not CO2 -saturated at such concentrations, enhanced ,source activity' of leaves could stimulate ,sink activity' (i.e. growth) of plants, provided other resources and developmental controls permit. I explore current levels of non-structural carbon in trees in natural forests in order to estimate the potential for a carbon-driven stimulation of growth. 2The concentration of non-structural carbohydrates (NSC) in tree tissues is considered a measure of carbon shortage or surplus for growth. A periodic reduction of NSC pools indicates either that carbon demand exceeds con-current supply, or that both source and sink activity are low. A steady, very high NSC concentration is likely to indicate that photosynthesis fully meets, or even exeeds, that needed for growth (surplus assimilates accumulate). 3The analysis presented here considers data for mature trees in four climatic zones: the high elevation treeline (in Mexico, the Alps and Northern Sweden), a temperate lowland forest of central Europe, Mediterranean sclerophyllous woodland and a semideciduous tropical forest in Panama. 4In all four climatic regions, periods of reduced or zero growth show maximum C-loading of trees (source activity exceeding demand), except for dry midsummer in the Mediterranean. NSC pools are generally high throughout the year, and are not significantly affected by mass fruiting episodes. 5It is concluded that, irrespective of the reason for its periodic cessation, growth does not seem to be limited by carbon supply. Instead, in all the cases examined, sink activity and its direct control by the environment or developmental constraints, restricts biomass production of trees under current ambient CO2 concentrations. 6The current carbohydrate charging of mature wild trees from the tropics to the cold limit of tree growth suggests that little (if any) leeway exists for further CO2 -fertilization effects on growth. [source]


J.A. Raven
Symbiosis is important in the cell and environmental biology of algae. Some examples involving the author and numerous collaborators include: 1) chloroplasts of eukaryotic algae arose from endosymbioses. Plastids are incapable of independent existence; most of the genes of the cyanobacterial photobiont have been lost, and the majority of the rest have been transferred to the nuclear genome. Some of the genes retained by the plastid are those whose transcription is controlled by environmental cues transduced by the organelle. The general trend is for organelle genes to be transferred to the nucleus, escaping plastid redox activities generating mutagenic free radicals; 2) symbioses involving potentially free-living photobionts include marine lichens and sponges with cyanobacterial symbionts. For the lichen, Lichina, inorganic carbon acquisition appears to involve inorganic carbon transport by the mycobiont, and for the sponge, Cymbastella, the flagellar activity of the sponge is probably important for inorganic carbon supply to the photobiont; 3) the Australasian fucalean, Notheia, is an obligate epiphyte on the fucaleans, Hormosira and Xiphophora; the four species involved all contain the hexitol, altritol. Notheia anomala is known to be phyletically-distant from the other five altritol-containing species. Can Notheia synthesize altritol, or is it obtained from the phorophyte?; 4) Sacoglossan gastropods retain kleptoplastids (not strictly symbionts) from ulvophycean (or rhodophycean) marine algae. Analyses of the natural abundance of stable carbon isotopes suggest significant contribution of kleptoplastid photosynthesis to the carbon and energy budget of the mollusks. [source]

Hemicellulose concentration and composition in plant cell walls under extreme carbon source,sink imbalances

Christina Schädel
Hemicelluloses account for one-quarter of the global dry plant biomass and therefore are the second most abundant biomass fraction after cellulose. Despite their quantitative significance, the responsiveness of hemicelluloses to atmospheric carbon oversupply is still largely unknown, although hemicelluloses could serve as carbon sinks with increasing CO2 concentrations. This study aimed at clarifying the role hemicelluloses play as carbon sinks, analogous to non-structural carbohydrates (NSC), by experimentally manipulating the plants' carbon supply. Sixteen plant species from four different plant functional types (grasses, herbs, seedlings of broad-leaved trees and conifers) were grown for 2 months in greenhouses at either extremely low (140 ppm), medium (280 ppm) or high (560 ppm) atmospheric CO2 concentrations, thus inducing situations of massive C-limitation or -oversupply. Above and belowground biomass as well as NSC significantly increased in all species and tissues with increasing CO2 concentrations. Increasing CO2 concentrations had no significant effect on total hemicellulose concentrations in leaves and woody tissues in all species, except for two out of four grass species, where hemicellulose concentrations increased with atmospheric CO2 supply. Despite the overall stable total hemicellulose concentrations, the monosaccharide spectra of hemicelluloses showed a significant increase in glucose monomers in leaves of woody species as C-supply increased. In summary, total hemicellulose concentrations in de novo built biomass seem to be largely unaffected by changed atmospheric CO2 concentrations, while significant increases of hemicellulose-derived glucose with increasing CO2 concentrations in leaves of broad-leaved and conifer tree seedlings showed differential responses among the different hemicellulose classes in response to varying CO2 concentrations. [source]

Height-related growth declines in ponderosa pine are not due to carbon limitation

ABSTRACT Decreased gas exchange as trees grow tall has been proposed to explain age-related growth declines in trees. We examined changes of mobile carbon stores (starch, sugars and lipids) with tree height in ponderosa pine (Pinus ponderosa) at two sites differing in water availability, and tested the following hypotheses: (1) carbon supply does not become increasingly limited as trees grow tall; rather, the concentration of mobile carbon compounds increases with tree height reflecting greater reductions of carbon sink activities relative to carbon assimilation; and (2) increases of stored mobile carbon compounds with tree height are greater in drier sites. Height-related growth reductions were associated with significant increases of non-structural carbohydrates (NSC) and lipid concentrations in all tissues in the upper canopy and of NSC in the bole. Lipid concentrations in the bole decreased with tree height, but such decrease is not necessarily inconsistent with non-limiting carbon supply in tall trees. Furthermore, we found stronger increases of mobile carbon stores with tree height at the dry site relative to the moist site. Our results provide first direct evidence that carbon supply does not limit growth in tall trees and that decreases of water availability might negatively impact growth processes more than net-photosynthesis. [source]

pH and carbon supply control the expression of phosphoenolpyruvate carboxylase kinase genes in Arabidopsis thaliana

ABSTRACT Phosphoenolpyruvate carboxylase (PEPC) is thought to play many roles in C3 plants including the provision of biosynthetic precursors and control of pH during N assimilation. Its activity is controlled via phosphorylation catalysed by PEPC kinases, which are encoded by PPCK genes. We examined PPCK expression in response to changes in the supply of N or C, and to changes in intracellular pH, using cultured Arabidopsis cells and seedlings. The results show that expression of both PPCK1 and PPCK2 is increased by C availability, but does not respond to N availability. Expression of the two PPCK genes and the phosphorylation state of PEPC are increased in response to increasing intracellular pH. Elevated pH also reduces the repression of PPCK gene expression by Pi. Expression of phosphoenolpyruvate carboxykinase (PEPCK), which catalyses the decarboxylation of oxaloacetate, is decreased in response to increasing intracellular pH. pH homeostasis may be mediated at least partly by reciprocal changes in the expression of PPCK genes and PEPCK. [source]

Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteoid roots in white lupin (Lupinus albus L.)

C. D. Campbell
Abstract Atmospheric [CO2] affects photosynthesis and therefore should affect the supply of carbon to roots. To evaluate interactions between carbon supply and nutrient acquisition, the [CO2] effects on root growth, proteoid root formation and phosphorus (P) uptake capacity were studied in white lupin (Lupinus albus L.) grown hydroponically at 200, 410 and 750 µmol mol,1 CO2, under sufficient (0·25 mm P) and deficient (0·69 µm P) phosphorus. Plant size increased with increasing [CO2] only at high P. Both P deficiency and increasing [CO2] increased the production of proteoid clusters; the increase in response to increased [CO2] was proportionally greater from low to ambient [CO2] than from ambient to high. The activity of phosphoenol pyruvate carboxylase in the proteoid root, the exudation of organic acids from the roots, and the specific uptake of P increased with P deficiency, but were unaffected by [CO2]. Increasing [CO2] from Pleistocene levels to those predicted for the next century increased plant size and allocation to proteoid roots, but did not change the specific P uptake capacity per unit root mass. Hence, rising [CO2] should promote nutrient uptake by allowing lupins to mine greater volumes of soil. [source]

Scion genotype controls biomass allocation and root development in grafted grapevine

Abstract Background and Aims:, Grafting is used in viticulture worldwide. Rootstocks are known to alter scion development or ,confer vigour' to varying degrees. This work examines scion/rootstock interactions in young grafted grapevines. Its aim was to determine the effects of scion and rootstock genotypes on biomass allocation within the plant. Methods and Results:, Five months after grafting, biomass allocation between the root and the shoot was measured for all the scion/rootstock combinations made between three Vitis genotypes. The scion genotype explained the highest percentage of the non-random variance for biomass allocation within the plant, including biomass allocation to the roots, i.e. it conferred differences in root vigour. In addition, we developed a double-grafted system, in which a single scion was grafted onto two rootstocks, to analyse further scion (or carbon source) effects on root development. Conclusions:, This work provides evidence of conferred root vigour by the scion which does not appear to be related to carbon supply from the shoot. The genotypes studied display varying levels of plasticity in their response to different grafting partners. Significance of the Study:, This work presents detailed analysis of biomass allocation within young grafted vines. In young grafted grapevines, the scion genotype has a major effect on most parameters of development, especially in the root. This aspect of rootstock/scion interactions should be taken into account when selecting rootstocks. A double-grafting system was developed for future research on signalling pathways and exchange mechanisms between scion and rootstock in grafted grapevine. [source]