Carbon Storage (carbon + storage)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Carbon Storage

  • soil carbon storage


  • Selected Abstracts


    Carbon storage and fluxes in ponderosa pine forests at different developmental stages

    GLOBAL CHANGE BIOLOGY, Issue 7 2001
    B.E. Law
    Abstract We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome-BGC simulations of fluxes. The young forest (Y site) was previously an old-growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m,2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m,2 year,1), and it was largely from soils at both sites (77% of Re). The biological data show that above-ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m,2 year,1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15-km swath in the region, ANPP ranged from 76 g C m,2 year,1 at the Y site to 236 g C m,2 year,1 (overall mean 158 ± 14 g C m,2 year,1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome-BGC model suggest that disturbance type and frequency, time since disturbance, age-dependent changes in below-ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget-based observations to within ±,20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand-replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10,20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long-term pools (biomass and soils) in addition to short-term fluxes has important implications for management of forests in the Pacific North-west for carbon sequestration. [source]


    Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation

    CONSERVATION LETTERS, Issue 5 2009
    Yann Clough
    Abstract Cacao cultivation holds a sweet promise, not only for chocolate consumers and cacao farmers but also for conservationists who argue that diverse cacao agroforests may be used to sustain both livelihoods of smallholders and ecological benefits such as the conservation of biodiversity within human-dominated tropical landscapes. However, regional boom-and-bust cycles are the rule in global cacao production: after initial forest conversion to cacao agroforests, sustaining production is difficult due to dwindling yields as trees age and pest and disease pressure increases. The failure to revitalize plantations often leads to a shift of cacao production to other regions. Shade removal dynamics within these cycles substantially reduce most of the biodiversity benefits. We investigate the conservation implications of these processes. Using examples from the current cacao crisis in Indonesia, we show that until now commitments to sustainability by the cacao-chocolate sector have not been successful, which endangers remaining forests. Conservation can be combined with smallholder cacao production, but if this is to be achieved, greater quantitative and qualitative efforts to halt cacao cycles are needed on the part of the industry by making use of existing opportunities to combine sustainability, carbon storage, and biodiversity conservation. [source]


    High resolution quantification of gully erosion in upland peatlands at the landscape scale

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2010
    Martin Evans
    Abstract The upland peatlands of the UK are severely eroded, with large areas affected by gully erosion. The peatlands are important areas of carbon storage and provide a range of other ecosystem services including water supply and biodiversity all of which are negatively impacted by erosion of the upland surface. The magnitude of the gully erosion, and consequent adjustment of the peatland morphology, is such that in degraded peatlands the extent and magnitude of erosion is a major control on peatland function. Accurate mapping of gully form is therefore a necessary precondition to the understanding and management of these systems. This paper develops an approach to extracting gully maps from high resolution digital elevation models (DEMs). Gully maps of the Bleaklow Plateau in northern England were derived from a 2,m LiDAR DEM by combining areas of low difference from mean elevation and high positive plan curvature. Gully depth was modelled by interpolating between gully edges. Testing of the gully mapping and depth modelling against aerial photography, manual interpretation of the DEM and ground survey revealed that gully plan form is well represented and gully width and depth are modelled with tolerances close to the horizontal and vertical resolution of the LiDAR imagery. Estimates of gully width and depth were less reliable for gullies with total width of less than four pixels. The approach allows for the first time the derivation of accurate estimates of gully extent and magnitude over large areas and provides the basis for modelling a range of processes controlled by gullying. The approach has wider applicability to mapping gully erosion in a wide range of environments. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Plant functional traits and soil carbon sequestration in contrasting biomes

    ECOLOGY LETTERS, Issue 5 2008
    Gerlinde B. De Deyn
    Abstract Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration. [source]


    Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches

    FUNCTIONAL ECOLOGY, Issue 4 2010
    Jennifer S. Powers
    Summary 1.,One way to simplify the high taxonomic diversity of plant species in vegetation models is to place species into groups based on shared, dominant traits. Many studies have suggested that morphological and physiological traits of tropical dry forest tree species vary with leaf habit (i.e. leaves from evergreen, deciduous or semi-deciduous species) and thus this characteristic may serve as a useful way to distinguish ecologically meaningful functional types. 2.,In this study we examine whether 10 plant traits vary with leaf habit in replicated leaves and individual trees of 87 species from a tropical dry forest in Costa Rica. We also looked for evidence of phylogenetic conservatism, i.e. closely related species sharing similar trait values compared to more distantly related taxa. 3.,While some of the traits varied within and among individual trees of the same species, interspecific variation accounted for 57,83% of the variance among samples. Four traits in addition to leaf habit showed evidence of phylogenetic conservatism, but these results were strongly dependent on the inclusion of the 18 species of legumes (Fabaceae) in our dataset. Contrary to our predictions, none of the traits we measured differed among leaf habits. However, five traits (wood density, leaf C, leaf N, N/P and C/N) varied significantly between legumes and other functional types. Furthermore, when all high-nitrogen non-legume taxa were compared to the high-nitrogen legumes, six traits excluding leaf N differed significantly, indicating that legumes are functionally different from other tree species beyond high N concentrations. Similarly, the 18 legume taxa (which all have compound leaves) also differed from other compound-leaved species for six traits, thus leaf type does not explain these patterns. 4.,Our main conclusions are that (i) a plant functional type classification based on leaf habit alone has little utility in the tropical dry forest we studied, and (ii) legumes have a different suite of traits including high leaf carbon and wood density in addition to high leaf nitrogen. Whether this result generalizes to other tropical forests is unknown, but merits future research due to the consequences of these traits for carbon storage and ecosystem processes. [source]


    Allometry, growth and population regulation of the desert shrub Larrea tridentata

    FUNCTIONAL ECOLOGY, Issue 2 2008
    A. P. Allen
    Summary 1Quantifying the effects of individual- and population-level processes on plant-community structure is of fundamental importance for understanding how biota contribute to the flux, storage and turnover of matter and energy in ecosystems. 2Here we synthesize plant-allometry theory with empirical data to evaluate the roles of individual metabolism and competition in structuring populations of the creosote Larrea tridentata, a dominant shrub in deserts of southwestern North America. 3At the individual level, creosote data support theoretical predictions with regard to the size dependence of total leaf mass, short-term growth rates of leaves and long-term growth rates of entire plants. Data also support the prediction that root,shoot biomass allocation is independent of plant size. 4At the population level, size,abundance relationships within creosote stands deviate strongly from patterns observed for steady-state closed-canopy forests due to episodic recruitment events. This finding highlights that carbon storage and turnover in water-limited ecosystems can be inherently less predictable than in mesic environments due to pronounced environmental forcing on demographic variables. 5Nevertheless, broad-scale comparative analyses across ecosystems indicate that the relationship of total abundance to average size for creosote populations adhere to the thinning rule observed and predicted by allometry theory. This finding indicates that primary production in water-limited ecosystems can be independent of standing biomass due to competition among plants for resources. 6Our synthesis of theory with empirical data quantifies the primary roles of individual-level metabolism and competition in controlling the dynamics of matter and energy in water-limited ecosystems. [source]


    Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance

    GLOBAL CHANGE BIOLOGY, Issue 9 2010
    KEVIN D. LONG
    Abstract Eddy covariance measurements of methane (CH4) net flux were made in a boreal fen, typical of the most abundant peatlands in western Canada during May,September 2007. The objectives of this study were to determine: (i) the magnitude of diurnal and seasonal variation in CH4 net flux, (ii) the relationship between the temporally varying flux rates and associated changes in controlling biotic and abiotic factors, and (iii) the contribution of CH4 emission to the ecosystem growing season carbon budget. There was significant diurnal variation in CH4 emission during the peak of the growing season that was strongly correlated with associated changes in solar radiation, latent heat flux, air temperature and ecosystem conductance to water vapor. During days 181,215, nighttime average CH4 efflux was only 47% of the average midday values. The peak value for daily average CH4 emission rate was approximately 80 nmol m,2 s,1 (4.6 mg CH4 m,2 h,1), and seasonal variation in CH4 flux was strongly correlated with changes in soil temperature. Integrated over the entire measurement period [days 144,269 (late May,late September)], the total CH4 emission was 3.2 g CH4 m,2, which was quite low relative to other wetland ecosystems and to the simultaneous high rate of ecosystem net CO2 sequestration that was measured (18.1 mol CO2 m,2 or 217 g C m,2). We estimate that the negative radiative forcing (cooling) associated with net carbon storage over the life of the peatland (approximately 2200 years) was at least twice the value of positive radiative forcing (warming) caused by net CH4 emission over the last 50 years. [source]


    Implications of future climate and atmospheric CO2 content for regional biogeochemistry, biogeography and ecosystem services across East Africa

    GLOBAL CHANGE BIOLOGY, Issue 2 2010
    RUTH M. DOHERTY
    Abstract We model future changes in land biogeochemistry and biogeography across East Africa. East Africa is one of few tropical regions where general circulation model (GCM) future climate projections exhibit a robust response of strong future warming and general annual-mean rainfall increases. Eighteen future climate projections from nine GCMs participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment were used as input to the LPJ dynamic global vegetation model (DGVM), which predicted vegetation patterns and carbon storage in agreement with satellite observations and forest inventory data under the present-day climate. All simulations showed future increases in tropical woody vegetation over the region at the expense of grasslands. Regional increases in net primary productivity (NPP) (18,36%) and total carbon storage (3,13%) by 2080,2099 compared with the present-day were common to all simulations. Despite decreases in soil carbon after 2050, seven out of nine simulations continued to show an annual net land carbon sink in the final decades of the 21st century because vegetation biomass continued to increase. The seasonal cycles of rainfall and soil moisture show future increases in wet season rainfall across the GCMs with generally little change in dry season rainfall. Based on the simulated present-day climate and its future trends, the GCMs can be grouped into four broad categories. Overall, our model results suggest that East Africa, a populous and economically poor region, is likely to experience some ecosystem service benefits through increased precipitation, river runoff and fresh water availability. Resulting enhancements in NPP may lead to improved crop yields in some areas. Our results stand in partial contradiction to other studies that suggest possible negative consequences for agriculture, biodiversity and other ecosystem services caused by temperature increases. [source]


    Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections

    GLOBAL CHANGE BIOLOGY, Issue 2 2010
    HAIFENG QIAN
    Abstract The ongoing and projected warming in the northern high latitudes (NHL; poleward of 60 °N) may lead to dramatic changes in the terrestrial carbon cycle. On the one hand, warming and increasing atmospheric CO2 concentration stimulate vegetation productivity, taking up CO2. On the other hand, warming accelerates the decomposition of soil organic matter (SOM), releasing carbon into the atmosphere. Here, the NHL terrestrial carbon storage is investigated based on 10 models from the Coupled Carbon Cycle Climate Model Intercomparison Project. Our analysis suggests that the NHL will be a carbon sink of 0.3 ± 0.3 Pg C yr,1 by 2100. The cumulative land organic carbon storage is modeled to increase by 38 ± 20 Pg C over 1901 levels, of which 17 ± 8 Pg C comes from vegetation (43%) and 21 ± 16 Pg C from the soil (8%). Both CO2 fertilization and warming enhance vegetation growth in the NHL. Although the intense warming there enhances SOM decomposition, soil organic carbon (SOC) storage continues to increase in the 21st century. This is because higher vegetation productivity leads to more turnover (litterfall) into the soil, a process that has received relatively little attention. However, the projected growth rate of SOC begins to level off after 2060 when SOM decomposition accelerates at high temperature and then catches up with the increasing input from vegetation turnover. Such competing mechanisms may lead to a switch of the NHL SOC pool from a sink to a source after 2100 under more intense warming, but large uncertainty exists due to our incomplete understanding of processes such as the strength of the CO2 fertilization effect, permafrost, and the role of soil moisture. Unlike the CO2 fertilization effect that enhances vegetation productivity across the world, global warming increases the productivity at high latitudes but tends to reduce it in the tropics and mid-latitudes. These effects are further enhanced as a result of positive carbon cycle,climate feedbacks due to additional CO2 and warming. [source]


    Carbon stored in human settlements: the conterminous United States

    GLOBAL CHANGE BIOLOGY, Issue 1 2010
    GALINA CHURKINA
    Abstract Urban areas are home to more than half of the world's people, responsible for >70% of anthropogenic release of carbon dioxide and 76% of wood used for industrial purposes. By 2050 the proportion of the urban population is expected to increase to 70% worldwide. Despite fast rates of change and potential value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has not been well quantified. Here, we show that human settlements can store as much carbon per unit area (23,42 kg C m,2 urban areas and 7,16 kg C m,2exurban areas) as tropical forests, which have the highest carbon density of natural ecosystems (4,25 kg C m,2). By the year 2000 carbon storage attributed to human settlements of the conterminous United States was 18 Pg of carbon or 10% of its total land carbon storage. Sixty-four percent of this carbon was attributed to soil, 20% to vegetation, 11% to landfills, and 5% to buildings. To offset rising urban emissions of carbon, regional and national governments should consider how to protect or even to increase carbon storage of human-dominated landscapes. Rigorous studies addressing carbon budgets of human settlements and vulnerability of their carbon storage are needed. [source]


    Litter decomposition in grasslands of Central North America (US Great Plains)

    GLOBAL CHANGE BIOLOGY, Issue 5 2009
    ELIANA E. BONTTI
    Abstract One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long-Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration, and climate decomposition index), and litter quality (lignin content, carbon : nitrogen, and lignin : nitrogen ratios) on leaf and root decomposition in the US Great Plains. Wooden dowels were used to provide a homogeneous litter quality to evaluate the relative importance of above and belowground environments on decomposition. Contrary to expectations, temperature did not explain variation in root and leaf decomposition, whereas precipitation partially explained variation in root decomposition. Percent lignin was the best predictor of leaf and root decomposition. It also explained most variation in root decomposition in models which combined litter quality and climatic variables. Despite the lack of relationship between temperature and root decomposition, temperature could indirectly affect root decomposition through decreased litter quality and increased water deficits. These results suggest that carbon flux from root decomposition in grasslands would increase, as result of increasing temperature, only if precipitation is not limiting. However, where precipitation is limiting, increased temperature would decrease root decomposition, thus likely increasing carbon storage in grasslands. Under homogeneous litter quality, belowground decomposition was faster than aboveground and was best predicted by mean annual precipitation, which also suggests that the high moisture in soil accelerates decomposition belowground. [source]


    Plant diversity positively affects short-term soil carbon storage in experimental grasslands

    GLOBAL CHANGE BIOLOGY, Issue 12 2008
    SIBYLLE STEINBEISS
    Abstract Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ,The Jena Experiment', a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0,30 cm decreased from 7.3 kg C m,2 in 2002 to 6.9 kg C m,2 in 2004, but had recovered to 7.8 kg C m,2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short-term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log-transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build-up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long-term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation. [source]


    Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils

    GLOBAL CHANGE BIOLOGY, Issue 10 2008
    ALWYN SOWERBY
    Abstract Current predictions of climate change include altered rainfall patterns throughout Europe, continental USA and areas such as the Amazon. The effect of this on soil carbon efflux remains unclear although several modelling studies have highlighted the potential importance of drought for carbon storage. To test the importance of drought, and more importantly repeated drought year-on-year, we used automated retractable curtains to exclude rain and produce repeated summer drought in three heathlands at varying moisture conditions. This included a hydric system limited by water-excess (in the UK) and two mesic systems with seasonal water limitation in Denmark (DK) and the Netherlands (NL). The experimental rainfall reductions were set to reflect single year droughts observed in the last decade with exclusion of rain for 2,3 months of the year resulting in a 20,26% reduction in annual rainfall and 23,38% reduction in mean soil moisture during the drought period. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods) was also observed at all three sites, along with a reduction in the maximum water-holding capacity attained. Three hypotheses are discussed which may have contributed to this lack of recovery in soil moisture: hydrophobicity of soil organic matter, increased water use by plants and increased cracking of the soil. The responses of soil respiration to this change in soil moisture varied among the sites: decreased rates were observed at the water-limited NL and DK sites whilst they increased at the UK site. Reduced sensitivity of soil respiration to soil temperature was observed at soil moisture contents above 55% at the UK site and below 20% and 13% at the NL and DK sites, respectively. Soil respiration rates recovered to predrought levels in the NL and DK sites during the winter re-wetting period that indicates any change in soil C storage due to changes in soil C efflux may be short lived in these mesic systems. In contrast, in the hydric UK site after 2 years of drought treatment, the persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels. These findings suggest that carbon-rich soils with high organic matter content may act as a significant source of CO2 to the atmosphere following repeated summer drought. Nonrecovery of soil moisture and a persistent increase in soil respiration may be the primary mechanism underlying the reported substantial losses of soil carbon from UK organic soils over the last 20 years. These findings indicate that the water status of an ecosystem will be a critical factor to consider in determining the impact of drought on the soil carbon fluxes and storage. [source]


    Storage, patterns and controls of soil organic carbon in the Tibetan grasslands

    GLOBAL CHANGE BIOLOGY, Issue 7 2008
    YUANHE YANG
    Abstract The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001,2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1 m in the alpine grasslands was estimated at 7.4 Pg C (1 Pg=1015 g), with an average density of 6.5 kg m,2. The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands. [source]


    Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis

    GLOBAL CHANGE BIOLOGY, Issue 5 2004
    Daniel Nepstad
    Abstract Severe drought in moist tropical forests provokes large carbon emissions by increasing forest flammability and tree mortality, and by suppressing tree growth. The frequency and severity of drought in the tropics may increase through stronger El Niño Southern Oscillation (ENSO) episodes, global warming, and rainfall inhibition by land use change. However, little is known about the spatial and temporal patterns of drought in moist tropical forests, and the complex relationships between patterns of drought and forest fire regimes, tree mortality, and productivity. We present a simple geographic information system soil water balance model, called RisQue (Risco de Queimada , Fire Risk) for the Amazon basin that we use to conduct an analysis of these patterns for 1996,2001. RisQue features a map of maximum plant-available soil water (PAWmax) developed using 1565 soil texture profiles and empirical relationships between soil texture and critical soil water parameters. PAW is depleted by monthly evapotranspiration (ET) fields estimated using the Penman,Monteith equation and satellite-derived radiation inputs and recharged by monthly rain fields estimated from 266 meteorological stations. Modeled PAW to 10 m depth (PAW10 m) was similar to field measurements made in two Amazon forests. During the severe drought of 2001, PAW10 m fell to below 25% of PAWmax in 31% of the region's forests and fell below 50% PAWmax in half of the forests. Field measurements and experimental forest fires indicate that soil moisture depletion below 25% PAWmax corresponds to a reduction in leaf area index of approximately 25%, increasing forest flammability. Hence, approximately one-third of Amazon forests became susceptible to fire during the 2001 ENSO period. Field measurements also suggest that the ENSO drought of 2001 reduced carbon storage by approximately 0.2 Pg relative to years without severe soil moisture deficits. RisQue is sensitive to spin-up time, rooting depth, and errors in ET estimates. Improvements in our ability to accurately model soil moisture content of Amazon forests will depend upon better understanding of forest rooting depths, which can extend to beyond 15 m. RisQue provides a tool for early detection of forest fire risk. [source]


    Estimating soil carbon fluxes following land-cover change: a test of some critical assumptions for a region in Costa Rica

    GLOBAL CHANGE BIOLOGY, Issue 2 2004
    Jennifer S. Powers
    Abstract Changes in soil carbon storage that accompany land-cover change may have significant effects on the global carbon cycle. The objective of this work was to examine how assumptions about preconversion soil C storage and the effects of land-cover change influence estimates of regional soil C storage. We applied three models of land-cover change effects to two maps of preconversion soil C in a 140 000 ha area of northeastern Costa Rica. One preconversion soil C map was generated using values assigned to tropical wet forest from the literature, the second used values obtained from extensive field sampling. The first model of land-cover change effects used values that are typically applied in global assessments, the second and third models used field data but differed in how the data were aggregated (one was based on land-cover transitions and one was based on terrain attributes). Changes in regional soil C storage were estimated for each combination of model and preconversion soil C for three time periods defined by geo-referenced land-cover maps. The estimated regional soil C under forest vegetation (to 0.3 m) was higher in the map based on field data (10.03 Tg C) than in the map based on literature data (8.90 Tg C), although the range of values derived from propagating estimation errors was large (7.67,12.40 Tg C). Regional soil C storage declined through time due to forest clearing for pasture and crops. Estimated CO2 fluxes depended more on the model of land-cover change effects than on preconversion soil C. Cumulative soil C losses (1950,1996) under the literature model of land-cover effects exceeded estimates based on field data by factors of 3.8,8.0. In order to better constrain regional and global-scale assessments of carbon fluxes from soils in the tropics, future research should focus on methods for extrapolating regional-scale constraints on soil C dynamics to larger spatial and temporal scales. [source]


    Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937,1999

    GLOBAL CHANGE BIOLOGY, Issue 3 2003
    GREGORY P. ASNER
    Abstract Although local increases in woody plant cover have been documented in arid and semiarid ecosystems worldwide, there have been few long-term, large-scale analyses of changes in woody plant cover and aboveground carbon (C) stocks. We used historical aerial photography, contemporary Landsat satellite data, field observations, and image analysis techniques to assess spatially specific changes in woody vegetation cover and aboveground C stocks between 1937 and 1999 in a 400-km2 region of northern Texas, USA. Changes in land cover were then related to topo-edaphic setting and historical land-use practices. Mechanical or chemical brush management occurred over much of the region in the 1940,1950s. Rangelands not targeted for brush management experienced woody cover increases of up to 500% in 63 years. Areas managed with herbicides, mechanical treatments or fire exhibited a wide range of woody cover changes relative to 1937 (,75% to + 280%), depending on soil type and time since last management action. At the integrated regional scale, there was a net 30% increase in woody plant cover over the 63-year period. Regional increases were greatest in riparian corridors (33%) and shallow clay uplands (26%) and least on upland clay loams (15%). Allometric relationships between canopy cover and aboveground biomass were used to estimate net aboveground C storage changes in upland (nonriparian) portions of regional landscapes. Carbon stocks increased from 380 g C m,2 in 1937 to 500 g C m,2 in 1999, a 32% net increase across the 400 km2 region over the 63-year period. These plant C storage change estimates are highly conservative in that they did not include the substantial increases in woody plant cover observed within riparian landscape elements. Results are discussed in terms of implications for ,carbon accounting' and the global C cycle. [source]


    Potential effects of warming and drying on peatland plant community composition

    GLOBAL CHANGE BIOLOGY, Issue 2 2003
    Jake F. Weltzin
    Abstract Boreal peatlands may be particularly vulnerable to climate change, because temperature regimes that currently constrain biological activity in these regions are predicted to increase substantially within the next century. Changes in peatland plant community composition in response to climate change may alter nutrient availability, energy budgets, trace gas fluxes, and carbon storage. We investigated plant community response to warming and drying in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and a fen received three infrared warming treatments crossed with three water-table treatments (n = 3) for five years. Foliar cover of each species was estimated annually. In the bog, increases in soil temperature and decreases in water-table elevation increased cover of shrubs by 50% and decreased cover of graminoids by 50%. The response of shrubs to warming was distinctly species-specific, and ranged from increases (for Andromeda glaucophylla) to decreases (for Kalmia polifolia). In the fens, changes in plant cover were driven primarily by changes in water-table elevation, and responses were species- and lifeform-specific: increases in water-table elevation increased cover of graminoids , in particular Carex lasiocarpa and Carex livida, as well as mosses. In contrast, decreases in water-table elevation increased cover of shrubs, in particular A. glaucophylla and Chamaedaphne calyculata. The differential and sometimes opposite response of species and lifeforms to the treatments suggest that the structure and function of both bog and fen plant communities will change , in different directions or at different magnitudes , in response to warming and/or changes in water-table elevation that may accompany regional or global climate change. [source]


    Carbon storage and fluxes in ponderosa pine forests at different developmental stages

    GLOBAL CHANGE BIOLOGY, Issue 7 2001
    B.E. Law
    Abstract We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome-BGC simulations of fluxes. The young forest (Y site) was previously an old-growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m,2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m,2 year,1), and it was largely from soils at both sites (77% of Re). The biological data show that above-ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m,2 year,1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15-km swath in the region, ANPP ranged from 76 g C m,2 year,1 at the Y site to 236 g C m,2 year,1 (overall mean 158 ± 14 g C m,2 year,1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome-BGC model suggest that disturbance type and frequency, time since disturbance, age-dependent changes in below-ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget-based observations to within ±,20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand-replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10,20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long-term pools (biomass and soils) in addition to short-term fluxes has important implications for management of forests in the Pacific North-west for carbon sequestration. [source]


    Modelling the interannual variability of net ecosystem CO2 exchange at a subarctic sedge fen

    GLOBAL CHANGE BIOLOGY, Issue 5 2001
    Timothy J. Griffis
    Abstract This paper presents an empirical model of net ecosystem CO2 exchange (NEE) developed for a subarctic fen near Churchill, Manitoba. The model with observed data helps explain the interannual variability in growing season NEE. Five years of tower-flux data are used to test and examine the seasonal behaviour of the model simulations. Processes controlling the observed interannual variability of CO2 exchange at the fen are examined by exploring the sensitivity of the model to changes in air temperature, precipitation and leaf area index. Results indicate that the sensitivity of NEE to changing environmental controls is complex and varies interannually depending on the initial conditions of the wetland. Changes in air temperature and the timing of precipitation events have a strong influence on NEE, which is largely manifest in gross ecosystem photosynthesis (GEP). Climate change scenarios indicate that warmer air temperatures will increase carbon acquisition during wet years but may act to reduce wetland carbon storage in years that experience a large water deficit early in the growing season. Model simulations for this subarctic sedge fen indicate that carbon acquisition is greatest during wet and warm conditions. This suggests therefore that carbon accumulation was greatest at this subarctic fen during its early developmental stages when hydroclimatic conditions were relatively wet and warm at approximately 2500 years before present. [source]


    Soil organic carbon storage in grazing pasture converted from forest on Andosol soil

    GRASSLAND SCIENCE, Issue 4 2007
    Shigeo Takahashi
    Abstract In order to clarify the effect of land-use change from forest to grazing pasture on the organic carbon storage in Andosol soil, the Rothamsted carbon turnover model for volcanic soil was applied to a pasture situated at the National Livestock Breeding Center (37°09,N, 140°03,E). The top 25-cm soil layer was considered to be an active soil carbon pool. The carbon storage in the soils of native forest surrounding the pastures ranged 111,163 t C ha,1 with an average of 133 t C ha,1, which was adjusted according to an equivalent soil weight of pasture. The pasture soil carbon stocks ranged 88,135 t C ha,1, with variations according to site and/or pasture age. The carbon inputs to the soil through the above- and below-ground dead material from pasture plants and cattle feces were estimated to be 1.1, 1.8 and 0.9 t C ha,1 year,1, respectively. As the model outputs of 14C content of the soil, which is an index of carbon dating corresponding to nuclear weapons testing, showed a relatively close agreement with the observations, the modeling was acceptable for the purpose of predicting the turnover of organic carbon in Andosol soil. The model simulation demonstrated that, in order to maintain the average forest carbon level, 3,4 t ha,1 year,1 of the organic carbon input would be needed. These inputs would be provided in a grazing pasture producing 8,9 t ha,1 year,1 of above-ground dry matter. [source]


    The irreversible cattle-driven transformation of a seasonally flooded Australian savanna

    JOURNAL OF BIOGEOGRAPHY, Issue 5 2003
    Ben R. Sharp
    Abstract Aim ,Anecdotal historical and photographic evidence suggests that woody vegetation is increasing dramatically in some northern Australian savanna habitats. Vegetation change in savannas has important implications for pastoral land-use, conservation management, and landscape-scale carbon storage, and informs theoretical debates about ecosystem function. This study seeks to determine the nature, extent and cause(s) of woody vegetation change in a seasonally flooded alluvial savanna habitat. Location ,The study area is located within the seasonally inundated alluvial zone of the tidal portion of the Victoria River, Northern Territory, Australia. The study area has been grazed by domestic stock since c. 1900, prior to which the area was inhabited and more likely regularly burnt by Aboriginal people for thousands of years. Methods ,Digital georeferenced aerial photographic coverages were used to examine and quantify woody vegetation change between 1948 and 1993. Transect surveys of woody and herbaceous vegetation were carried out to ground-truth air-photo results and determine the nature and causes of observed vegetation changes. Results ,There has been a dramatic increase in woody vegetation cover throughout the study area. Vegetation change patterns are roughly uniform across the full range of edaphic habitat variation and are unrelated to the depositional age of fluvial sediments. Two woody species, Eucalyptus microtheca and Excoecaria parvifolia, are predominantly responsible for observed increases. Demographic analyses reveal that woody invasions have been episodic and indicate that in most locations peak woody species establishment occurred in the mid-1970s. Grasses are almost absent in a majority of habitats within the study area. Instead, large areas are covered by scalded soil, dense invasive weed populations, and unpalatable forbs and sedges. What grasses do occur are predominantly of very low value for grazing. The condition of the herbaceous layer renders most of the study area almost completely non-flammable; what fires do burn are small and of low intensity. Main conclusions ,Multiple working hypotheses explaining observed patterns of woody vegetation increase were considered and rejected in turn. The only hypothesis consistent with the evidence is as follows: (1) observed changes are a direct consequence of extreme overgrazing by cattle, most likely when stocking rates peaked in the mid-1970s; (2) prolonged heavy grazing effected the complete transformation of much of the herbaceous vegetation to a new state that is not flammable; and (3) in the absence of regular fire mortality, woody vegetation increased rapidly. The relatively treeless system that existed in 1948 was apparently stable and resilient to moderate grazing levels, and perhaps also to episodic heavy grazing events. However, grazing intensity in excess of a sustainable threshold has forced a transition that is irreversible in the foreseeable future. Stable-state transitions such as this one inform debates at the heart of ecological theory, such as the nature of stability, resilience, equilibrium and carrying capacity in dynamic savanna ecosystems. [source]


    A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics

    JOURNAL OF QUATERNARY SCIENCE, Issue 7 2004
    S. E. Page
    Abstract A 9.5,m core from an inland peatland in Kalimantan, Indonesia, reveals organic matter accumulation started around 26,000,cal.,yr,BP, providing the oldest reported initiation date for lowland ombrotrophic peat formation in SE Asia. The core shows clear evidence for differential rates of peat formation and carbon storage. A short period of initial accumulation is followed by a slow rate during the LGM, with fastest accumulation during the Holocene. Between ,13,000 and 8000,cal.,yr,BP, >,450,cm of peat were deposited, with highest rates of peat (>,2,mm,yr,1) and carbon (>,90,g,C,m,2,yr,1) accumulation between 9530 and 8590,cal.,yr,BP. These data suggest that Kalimantan peatlands acted as a large sink of atmospheric CO2 at this time. Slower rates of peat (0.15,0.38,mm,yr,1) and carbon (7.4,24.0,g,C,m,2,yr,1) accumulation between ,8000 and 500,cal.,yr,BP coincide with rapid peat formation in coastal locations elsewhere in SE Asia. The average LORCA (long-term apparent carbon accumulation rate) for the 9.5,m core is 56,g,C,m,2,yr,1. These data suggest that studies of global carbon sources, sinks and their dynamics need to include information on the past and present sizeable peat deposits of the tropics. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    JOURNAL OF VEGETATION SCIENCE, Issue 3 2002
    A.D. McGuire
    Abstract. The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes. [source]


    Woody Debris in the Mangrove Forests of South Florida1

    BIOTROPICA, Issue 1 2005
    Ken W. Krauss
    ABSTRACT Woody debris is abundant in hurricane-impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line-intercept woody debris surveys conducted in mangrove wetlands of South Florida 9,10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post-hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ,0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings. [source]


    Soil inorganic carbon storage pattern in China

    GLOBAL CHANGE BIOLOGY, Issue 10 2008
    NA MI
    Abstract Soils with pedogenic carbonate cover about 30% (3.44 × 106 km2) of China, mainly across its arid and semiarid regions in the Northwest. Based on the second national soil survey (1979,1992), total soil inorganic carbon (SIC) storage in China was estimated to be 53.3±6.3 PgC (1 Pg=1015 g) to the depth investigated to 2 m. Soil inorganic carbon storages were 4.6, 10.6, 11.1, and 20.8 Pg for the depth ranges of 0,0.1, 0.1,0.3, 0.3,0.5, and 0.5,1 m, respectively. Stocks for 0.1, 0.3, 0.5, and 1 m of depth accounted for 8.7%, 28.7%, 49.6%, and 88.9% of total SIC, respectively. In contrast with soil organic carbon (SOC) storage, which is highest under 500,800 mm yr,1 of mean precipitation, SIC storage peaks where mean precipitation is <400 mm yr,1. The amount and vertical distribution of SIC was related to climate and land cover type. Content of SIC in each incremental horizon was positively related with mean annual temperature and negatively related with mean annual precipitation, with the magnitude of SIC content across land cover types showing the following order: desert, grassland >shrubland, cropland >marsh, forest, meadow. Densities of SIC increased generally with depth in all ecosystem types with the exception of deserts and marshes where it peaked in intermediate layers (0.1,0.3 m for first and 0.3,0.5 m for latter). Being an abundant component of soil carbon stocks in China, SIC dynamics and the process involved in its accumulation or loss from soils require a better understanding. [source]